详细探讨基于第二代地面数字视频广播(Digital Video Broadcasting-Terrestrial 2,DVB-T2)标准的数字广播信号抗干扰技术,包括多天线技术(Multiple-Input Multiple-Output,MIMO)在抗干扰中的应用、干扰识别与抑制算法的开发、信号纠错...详细探讨基于第二代地面数字视频广播(Digital Video Broadcasting-Terrestrial 2,DVB-T2)标准的数字广播信号抗干扰技术,包括多天线技术(Multiple-Input Multiple-Output,MIMO)在抗干扰中的应用、干扰识别与抑制算法的开发、信号纠错与恢复机制的优化及卷积编码与交织技术的改进。通过理论分析与技术应用测试,显示这些创新措施可显著提高广播信号的稳定性和抗干扰能力,为数字广播系统在多变环境下的可靠运行提供有效支持。展开更多
地面数字电视广播(Digital Video Broadcasting-Terrestrial,DVB-T)技术凭借其高频谱利用率、抗干扰性及高速移动适应性,为地铁车地无线通信系统提供高效解决方案。文章分析DVB-T的应用优势,探讨其在乘客信息发布与多媒体广播服务、列...地面数字电视广播(Digital Video Broadcasting-Terrestrial,DVB-T)技术凭借其高频谱利用率、抗干扰性及高速移动适应性,为地铁车地无线通信系统提供高效解决方案。文章分析DVB-T的应用优势,探讨其在乘客信息发布与多媒体广播服务、列车监控与运营数据回传、应急通信与安全信息发布等领域的应用路径,并针对复杂环境下的信道干扰、频谱效率提升及低时延传输等关键问题提出优化措施。展开更多
随着数字电视的普及与发展,采用基于第二代地面数字视频广播(Digital Video Broadcasting-Terrestrial Second Generation,DVB-T2)技术的电视信号转播方案已经成为提升广播信号质量和覆盖范围的关键。针对电视信号塔的实时转播方案进行...随着数字电视的普及与发展,采用基于第二代地面数字视频广播(Digital Video Broadcasting-Terrestrial Second Generation,DVB-T2)技术的电视信号转播方案已经成为提升广播信号质量和覆盖范围的关键。针对电视信号塔的实时转播方案进行系统设计,重点分析不同环境下信号转播的技术需求。通过分析DVB-T2信号塔的系统架构、信号处理、传输链路、天线布局及频率分配等设计要点,提出一种具有高效性和实用性的实时转播方案,并保证方案在城市、山区和郊区等不同环境下的适配性,以实现广泛且稳定的信号覆盖。展开更多
The implementation of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for digital video broadcastingterrestrial (DVB-T) and other modem communi...The implementation of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for digital video broadcastingterrestrial (DVB-T) and other modem communication systems, is presented. By cooperating with a dual-modulus prescaler, this divider can realize an integer frequency division from 926 to 1 387. Besides the traditional standard cell design flow, such as logic synthesis, placement and routing, the interactions between front-end and back-end are also considered to optimize the design flow under deep submicron technology. By back-annotating the back-end information to front-end design, a custom wire-load model is created which is more practical compared with the default model. This divider has been fabricated in TSMC 0. 18μm CMOS technology using Artisan standard cell library. The chip area is 675 μm × 475 μm and the power consumption is about 2 mW under a 1.8 V power supply. Measurement results show that it works correctly and can realize a frequency division with high precision.展开更多
文摘详细探讨基于第二代地面数字视频广播(Digital Video Broadcasting-Terrestrial 2,DVB-T2)标准的数字广播信号抗干扰技术,包括多天线技术(Multiple-Input Multiple-Output,MIMO)在抗干扰中的应用、干扰识别与抑制算法的开发、信号纠错与恢复机制的优化及卷积编码与交织技术的改进。通过理论分析与技术应用测试,显示这些创新措施可显著提高广播信号的稳定性和抗干扰能力,为数字广播系统在多变环境下的可靠运行提供有效支持。
文摘地面数字电视广播(Digital Video Broadcasting-Terrestrial,DVB-T)技术凭借其高频谱利用率、抗干扰性及高速移动适应性,为地铁车地无线通信系统提供高效解决方案。文章分析DVB-T的应用优势,探讨其在乘客信息发布与多媒体广播服务、列车监控与运营数据回传、应急通信与安全信息发布等领域的应用路径,并针对复杂环境下的信道干扰、频谱效率提升及低时延传输等关键问题提出优化措施。
文摘随着数字电视的普及与发展,采用基于第二代地面数字视频广播(Digital Video Broadcasting-Terrestrial Second Generation,DVB-T2)技术的电视信号转播方案已经成为提升广播信号质量和覆盖范围的关键。针对电视信号塔的实时转播方案进行系统设计,重点分析不同环境下信号转播的技术需求。通过分析DVB-T2信号塔的系统架构、信号处理、传输链路、天线布局及频率分配等设计要点,提出一种具有高效性和实用性的实时转播方案,并保证方案在城市、山区和郊区等不同环境下的适配性,以实现广泛且稳定的信号覆盖。
基金The National Natural Science Foundation of China(No.60472057)
文摘The implementation of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for digital video broadcastingterrestrial (DVB-T) and other modem communication systems, is presented. By cooperating with a dual-modulus prescaler, this divider can realize an integer frequency division from 926 to 1 387. Besides the traditional standard cell design flow, such as logic synthesis, placement and routing, the interactions between front-end and back-end are also considered to optimize the design flow under deep submicron technology. By back-annotating the back-end information to front-end design, a custom wire-load model is created which is more practical compared with the default model. This divider has been fabricated in TSMC 0. 18μm CMOS technology using Artisan standard cell library. The chip area is 675 μm × 475 μm and the power consumption is about 2 mW under a 1.8 V power supply. Measurement results show that it works correctly and can realize a frequency division with high precision.