期刊文献+
共找到280,503篇文章
< 1 2 250 >
每页显示 20 50 100
基于加权DV-Hop算法的无线传感器物联网节点三维定位
1
作者 王显轩 刘炜 +1 位作者 陈洁萍 覃贵礼 《传感技术学报》 北大核心 2025年第6期1122-1126,共5页
为了更快、更准确地对无线传感器物联网节点展开定位,提出基于加权DV-Hop算法的无线传感器物联网节点三维定位的方法。采用DV-Hop算法计算无线传感器物联网节点每跳距离均值;利用加权因子和极大似然法对节点位置进行估算;并使用三维修... 为了更快、更准确地对无线传感器物联网节点展开定位,提出基于加权DV-Hop算法的无线传感器物联网节点三维定位的方法。采用DV-Hop算法计算无线传感器物联网节点每跳距离均值;利用加权因子和极大似然法对节点位置进行估算;并使用三维修正定位方法对估算的节点位置进行修正和优化,实现节点三维定位。实验结果表明,所提方法对于定位无线传感器物联网节点的平均定位误差低于0.25,归一化平均定位误差低于0.07,定位时间低于0.31 ms,定位的精度和效率较高,适用于无线传感器物联网节点定位。 展开更多
关键词 无线传感器 三维定位 加权dv-hop算法 极大似然值 三维修正定位方法
在线阅读 下载PDF
基于改进白鲸优化算法的三维DV-Hop定位算法 被引量:1
2
作者 陈悦 冯锋 《计算机科学》 北大核心 2025年第S1期798-806,共9页
为解决无线传感器网络中传统三维DV-Hop(Distance Vector Hop)算法在应对复杂环境时存在节点定位精度低、误差过大的问题,提出了一种基于改进白鲸优化算法(Improved Beluga Whale Optimization,IBWO)的三维定位算法(IBWO-DV-Hop)。首先... 为解决无线传感器网络中传统三维DV-Hop(Distance Vector Hop)算法在应对复杂环境时存在节点定位精度低、误差过大的问题,提出了一种基于改进白鲸优化算法(Improved Beluga Whale Optimization,IBWO)的三维定位算法(IBWO-DV-Hop)。首先,通过多通信半径并引入修正因子优化节点最小跳数,并利用跳距加权优化方法修正平均跳距,以降低通信半径不确定性和跳数误差对定位精度的影响。其次,引入IBWO代替最小二乘法估算未知节点的位置,所做改进包括在白鲸算法初始化阶段采用Sobol序列和反向学习结合的策略对初始种群实施改进,增加种群多样性。然后,在勘探阶段和开发阶段分别引入自适应t分布变异和自适应Levy飞行策略,增强算法的寻优能力。最后,在鲸落阶段引入透镜成像反向学习策略,提升算法的全局寻优能力。实验结果表明,与传统三维DV-hop算法以及其他同类算法相比,该算法具有更高的定位精度。 展开更多
关键词 无线传感器网络 三维dv-hop算法 白鲸优化算法 多通信半径 跳距加权优化 自适应t分布变异 透镜成像反向学习策略
在线阅读 下载PDF
基于浣熊算法优化的DV-Hop定位算法 被引量:1
3
作者 张潇 姜金晶 +1 位作者 李新 彭彤 《现代信息科技》 2025年第2期16-23,32,共9页
针对无线传感器网络定位算法中DV-Hop(Distance Vector-Hop)算法定位精度误差大与定位稳定性差的问题,提出了一种基于浣熊算法(Coati Optimization Algorithm,COA)的DV-Hop优化定位方法。首先,该方法利用多通信半径来精准计算节点间的跳... 针对无线传感器网络定位算法中DV-Hop(Distance Vector-Hop)算法定位精度误差大与定位稳定性差的问题,提出了一种基于浣熊算法(Coati Optimization Algorithm,COA)的DV-Hop优化定位方法。首先,该方法利用多通信半径来精准计算节点间的跳数,同时运用加权跳距的策略,对未知节点的平均跳距进行精确修正,然后,用浣熊优化算法替代传统的三边测量法进行坐标位置估计,最终得到节点定位坐标。为了验证所提出的方法的有效性,文章对提出的改进算法进行了实验验证。结果表明,在同等条件下,在不同锚节点数量、不同通信半径和不同节点总数场景下,改进算法比传统DV-Hop算法的平均定位误差分别降低了61.64%、47.24%与65.11%,从而证明提出的改进算法具有良好的定位精度和较好的稳定性。 展开更多
关键词 dv-hop算法 浣熊算法 多通信半径 加权跳距 节点定位
在线阅读 下载PDF
基于多通信半径最小跳数优化与跳距加权修正的DV-Hop定位算法
4
作者 张烈平 黄自晨 +2 位作者 尹亚梦 谭铭扬 王守峰 《科技导报》 北大核心 2025年第16期114-119,共6页
针对无线传感器网络节点应用传统DV-Hop定位算法时存在最小跳数值误差和平均跳距误差较大的问题,提出了基于多通信半径最小跳数优化与跳距加权修正的DV-Hop定位算法。采用锚节点通信半径多级数分层的方法,减少了未知节点最小跳数选取的... 针对无线传感器网络节点应用传统DV-Hop定位算法时存在最小跳数值误差和平均跳距误差较大的问题,提出了基于多通信半径最小跳数优化与跳距加权修正的DV-Hop定位算法。采用锚节点通信半径多级数分层的方法,减少了未知节点最小跳数选取的误差。通过加权平均跳距的方式进一步降低了因不规则网络拓扑结构导致的锚节点与未知节点之间距离计算的误差。最后,未知节点通过最小二乘法计算自身坐标。MATLAB仿真结果表明,通过对上述2个步骤的改进,在多种模拟环境中提出的DV-Hop定位算法相较传统DV-Hop算法及有关文献算法具有更高的定位精度。 展开更多
关键词 dv-hop定位算法 最小跳数优化 平均跳距加权
原文传递
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
5
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
6
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
7
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
一种应用引力搜索算法改进的DV-Hop模型
8
作者 石琴琴 丛新龙 +1 位作者 傅阳阳 张建平 《电讯技术》 北大核心 2025年第8期1306-1314,共9页
针对无线传感器网络节点定位模型DV-Hop(Distance Vector Hop)的各向异性网络应用适应性问题,提出了一种基于引力搜索算法优化的改进DV-Hop模型。首先,用平均跳距衡量信标间路径的曲折度并据此排序,有序提取未知节点,检索出对应的定位... 针对无线传感器网络节点定位模型DV-Hop(Distance Vector Hop)的各向异性网络应用适应性问题,提出了一种基于引力搜索算法优化的改进DV-Hop模型。首先,用平均跳距衡量信标间路径的曲折度并据此排序,有序提取未知节点,检索出对应的定位信标组合并完成距离估计,以此获得在当前网络拓扑条件下最优的定位计算条件;进而,将未知节点定位问题建模为非线性方程组求解问题,组合使用Min-Max算法和引力搜索算法,初始化种群并完成迭代求解。实验结果表明,与原DV-Hop模型和相关文献提出的3种典型改进模型DBO-DV-Hop、IMSSA-DV-Hop和OANS-DV-Hop相比,所提的改进模型可分别降低约52.1%、13.5%、18.8%和13.1%的平均定位误差,且对网络拓扑变化具有较强的鲁棒性,从而为保证DV-Hop模型在实际应用中的定位精度提供了一种可行方案。 展开更多
关键词 无线传感器网络 dv-hop 节点定位 平均跳距 引力搜索算法
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
9
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
基于改进蜣螂优化的DV-Hop定位算法
10
作者 吴星昊 雷文礼 《无线通信技术》 2025年第1期13-18,共6页
在无线传感器网络中,常规的距离-向量(DV-Hop)定位方式有很高的定位错误率,尤其是当节点数目分布不平衡或者通讯范围过广时。针对上述问题,本文提出了基于改进蜣螂优化算法(DBO)的IDBO-DV-Hop定位新方法,通过创新性地融合元启发式优化... 在无线传感器网络中,常规的距离-向量(DV-Hop)定位方式有很高的定位错误率,尤其是当节点数目分布不平衡或者通讯范围过广时。针对上述问题,本文提出了基于改进蜣螂优化算法(DBO)的IDBO-DV-Hop定位新方法,通过创新性地融合元启发式优化策略与传统DV-Hop定位算法,系统性地突破了传感器网络节点定位的性能瓶颈,在算法设计和技术实现上展现出显著的理论创新价值。本文通过引入改进的蜣螂优化算法(IDBO),该算法通过多策略进行改进,包含Sin映射策略、动态自适应权重策略以及柯西变异策略等,系统性地重构DV-Hop算法的定位框架,创新性地优化未知节点位置估计策略。本文提出的IDBO-DV-Hop算法不仅在理论设计上实现了位置偏差的有效抑制,更在定位精度提升方面取得了显著突破。通过严格的仿真验证,相较于其他定位算法,IDBO-DV-Hop定位算法在定位精确度上展现出卓越的性能优势。 展开更多
关键词 无线传感器网络 蜣螂优化算法 dv-hop Sin映射 柯西变异
原文传递
基于多种策略共同改进DV-Hop定位算法研究
11
作者 田祎然 《牡丹江师范学院学报(自然科学版)》 2025年第1期26-29,共4页
提出基于多种策略共同改进的DV-Hop定位算法,简称TNGODV-Hop.该算法加入Tent混沌映射初始化种群,采用混合反向学习策略优化北方苍鹰算法,计算未知节点的坐标.仿真实验结果表明,经过多策略共同改进的DV-Hop定位算法,在精度上取得了显著... 提出基于多种策略共同改进的DV-Hop定位算法,简称TNGODV-Hop.该算法加入Tent混沌映射初始化种群,采用混合反向学习策略优化北方苍鹰算法,计算未知节点的坐标.仿真实验结果表明,经过多策略共同改进的DV-Hop定位算法,在精度上取得了显著的提升. 展开更多
关键词 无线传感器网络 dv-hop定位算法 北方苍鹰优化算法
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
12
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
基于DV-Hop修正算法的移动物联感知传感定位
13
作者 雒晓凤 吴宏岐 《太赫兹科学与电子信息学报》 2025年第2期165-169,共5页
为解决经典距离向量跳段(DV-Hop)定位算法存在较大误差问题,提出一种基于多通信半径修正跳数计算未知节点位置的DV-Hop改进扩展算法。通过对无线传感器网络(WSN)中多通信半径与信邻/信标节点间跳数分级细化,精确移动物联感知传感定位跳... 为解决经典距离向量跳段(DV-Hop)定位算法存在较大误差问题,提出一种基于多通信半径修正跳数计算未知节点位置的DV-Hop改进扩展算法。通过对无线传感器网络(WSN)中多通信半径与信邻/信标节点间跳数分级细化,精确移动物联感知传感定位跳数,修正网络拓扑结构不规则多级通信半径。研究结果表明:不同通信半径下,该算法定位误差较传统DV-Hop算法、基于改进的樽海鞘群算法的DV-Hop(ISSA_DV-Hop)算法、基于差分进化的DV-Hop(DE_DV-Hop)算法分别降低约36.78%、10.63%、21.15%;不同信标节点数下,该算法定位误差比上述3种算法定位误差平均减小约33.17%、15.36%、21.07%。由此说明,基于DV-Hop修正算法可提高移动物联感知传感定位精确度,在无需添加硬件情况下能够减少数据误差,并确保WSN中未知节点平均跳距更符合DV-Hop定位算法实际和网络传感要求。 展开更多
关键词 不规则拓扑 dv-hop修正算法 多通信半径 无线传感器网络(WSN) 移动物联网
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
14
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
基于SSA和PSO协同优化的DV-Hop定位算法
15
作者 曹群丹 余修武 刘永 《通信技术》 2025年第7期719-726,共8页
为了提高无线传感器网络中非基于距离的定位算法的精度,提出了一种利用松鼠搜索算法(Squirrel Search Algorithm,SSA)和粒子群优化(Particle Swarm Optimization,PSO)算法协同优化的距离向量跳段(Distance Vector-Hop,DV-Hop)定位算法(S... 为了提高无线传感器网络中非基于距离的定位算法的精度,提出了一种利用松鼠搜索算法(Squirrel Search Algorithm,SSA)和粒子群优化(Particle Swarm Optimization,PSO)算法协同优化的距离向量跳段(Distance Vector-Hop,DV-Hop)定位算法(SSA-PSO)。首先,研究了传统的非测距DV-Hop算法定位过程中的误差来源;其次,引入接收信号强度(Received Signal Strength Indicators,RSSI)和校正因子来量化最小跳跃次数,并校正平均跳跃距离;最后,在未知节点估计过程中,采用改进的SSA代替最小二乘法,结合PSO算法,在标准SSA中引入了帐篷混沌初始化策略、位置贪婪选择策略和高斯变分策略,以提高最优性能。仿真结果表明,在不同的通信半径、锚定节点数量和节点总数下,与DV-Hop、遗传算法(Genetic Algorithm,GA)、SSA和PSO算法相比,SSA-PSO算法具有更高的定位精度。 展开更多
关键词 无线传感器网络 粒子群算法 松鼠搜索算法 节点定位 dv-hop
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
16
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
17
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
18
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
19
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
20
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部