期刊文献+
共找到282,822篇文章
< 1 2 250 >
每页显示 20 50 100
基于粒子群优化的DV-Distance改进算法 被引量:5
1
作者 刁绫 石为人 +2 位作者 冉启可 罗少甫 印爱民 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期12-19,共8页
DV-Distance算法通过未知节点与锚节点间的多跳协作,实现节点位置估计,简单实用,但定位精度不高。为了提高算法性能,本文提出一种基于粒子群优化的DV-Distance改进算法,针对RSSI测距引起的误差,利用链路质量指示(LQI)对RSSI的测量值进... DV-Distance算法通过未知节点与锚节点间的多跳协作,实现节点位置估计,简单实用,但定位精度不高。为了提高算法性能,本文提出一种基于粒子群优化的DV-Distance改进算法,针对RSSI测距引起的误差,利用链路质量指示(LQI)对RSSI的测量值进行惯性滤波,建立基于LQI的RSSI测距模型;并针对位置估计方法所引起的误差,通过粒子群算法对节点位置进行优化。结合DV-Distance算法自身特点,确定了粒子群算法适应值函数的选取和关键算法参数的确定。最后,仿真和实验证明改进算法有效可行,具有较高的定位精度。 展开更多
关键词 无线传感器网络 dv-distance算法 粒子群优化 链路质量指示
在线阅读 下载PDF
基于RSSI测距误差修正的改进型DV-distance差分定位算法 被引量:6
2
作者 沈军 黄春华 付新华 《计算机应用研究》 CSCD 北大核心 2012年第5期1873-1876,共4页
DV-distance是一种基于多跳机制的定位算法,其相邻节点间的距离通过RSSI测距技术实际测量得到。为了减少RSSI测距误差对定位精度的影响,首先对RSSI测距误差进行修正,再对已有的信标节点间计算距离误差修正值的方法作进一步改进,提出一... DV-distance是一种基于多跳机制的定位算法,其相邻节点间的距离通过RSSI测距技术实际测量得到。为了减少RSSI测距误差对定位精度的影响,首先对RSSI测距误差进行修正,再对已有的信标节点间计算距离误差修正值的方法作进一步改进,提出一种基于RSSI测距误差修正的改进型DV-distance差分定位算法。仿真结果表明,相比已有的定位算法,该改进算法不仅能提高节点的定位精度,还能减少网络通信开销及计算复杂度。 展开更多
关键词 定位 RSSI测距 误差修正 dv-distance
在线阅读 下载PDF
基于IFOA优化DV-distance算法的无线传感器网络定位研究 被引量:2
3
作者 庞先伟 左仁淑 +1 位作者 王婷婷 李学军 《现代电子技术》 北大核心 2017年第13期22-25,共4页
对无线传感器网络节点定位问题进行研究,提出一种基于IFOA优化DV-distance算法的WSNs定位方法。针对DV-distance算法定位精度低、噪声影响大,受限于网络拓扑结构等问题,将改进的果蝇优化算法(IFOA)引入到DVdistance设计中,实现了节点位... 对无线传感器网络节点定位问题进行研究,提出一种基于IFOA优化DV-distance算法的WSNs定位方法。针对DV-distance算法定位精度低、噪声影响大,受限于网络拓扑结构等问题,将改进的果蝇优化算法(IFOA)引入到DVdistance设计中,实现了节点位置的精确定位,为进一步提高算法定位的精度,引入动态加权修正因子,并给出动态误差修正策略,最后对WSNs节点定位问题进行实验仿真,仿真结果表明,基于IFOA优化的DV-distance定位算法较DV-distance和传统定位算法在定位精度上有明显改善。 展开更多
关键词 无线传感器网络 节点定位 果蝇优化算法 dv-distance
在线阅读 下载PDF
无线传感器网络DV-Distance定位算法 被引量:3
4
作者 付华 孙蕾 《计算机系统应用》 2010年第3期56-58,132,共4页
针对DV-Distance定位算法得到的距离值误差较大的问题,提出一种定位精度相对较高的改进型DV-Distance算法。DV-Distance定位算法通过求未知节点到参考节点之间跳段距离之和来确定未知节点坐标,改进算法在原算法的基础上,将参考节点间的... 针对DV-Distance定位算法得到的距离值误差较大的问题,提出一种定位精度相对较高的改进型DV-Distance算法。DV-Distance定位算法通过求未知节点到参考节点之间跳段距离之和来确定未知节点坐标,改进算法在原算法的基础上,将参考节点间的真实距离与这些参考节点间的跳段距离之和的比值作为修正权值,用这个修正权值来提高定位所需距离值的精确度,并利用RSSI测距技术限定可较为精确测距的有效未知节点,从而更进一步提高定位的精度。通过计算机的仿真和实验验证,结果表明此改进算法相对于原算法,较为明显的降低了定位误差,提高了定位的精度。 展开更多
关键词 无线传感器网络 定位 dv-distance RSSI 权值
在线阅读 下载PDF
一种改进型DV-distance自定位算法 被引量:2
5
作者 张东红 李科杰 吴德琼 《弹箭与制导学报》 CSCD 北大核心 2008年第3期275-277,共3页
由于DV-distance算法计算待定位节点到锚节点的距离是以分段距离之和代替直线距离,在网络不够密集的情况下,误差非常大;改进后的算法在原算法的基础上考虑了待定位节点到锚节点的跳数以及中间节点的邻节点数的影响,建立数学模型,对距离... 由于DV-distance算法计算待定位节点到锚节点的距离是以分段距离之和代替直线距离,在网络不够密集的情况下,误差非常大;改进后的算法在原算法的基础上考虑了待定位节点到锚节点的跳数以及中间节点的邻节点数的影响,建立数学模型,对距离进行修正;通过仿真对比证实改进后的算法较大程度提高了定位的精度。 展开更多
关键词 无线传感器网络 dv-distance自定位算法 RSSI测距
在线阅读 下载PDF
无线传感器网络动态加权DV-Distance算法 被引量:12
6
作者 石欣 冉启可 +2 位作者 范敏 于海存 王玲 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第9期1975-1981,共7页
无线传感器网络DV-Distance定位算法,采用未知节点与锚节点间的累计跳段距离代替欧式距离计算节点位置,存在较大的定位误差。针对这一问题,提出一种动态加权DV-Distance改进定位算法,基于未知节点的修正模式,保证定位网络中每个未知节... 无线传感器网络DV-Distance定位算法,采用未知节点与锚节点间的累计跳段距离代替欧式距离计算节点位置,存在较大的定位误差。针对这一问题,提出一种动态加权DV-Distance改进定位算法,基于未知节点的修正模式,保证定位网络中每个未知节点具有不同的修正系数;通过动态加权修正模型,用锚节点间距离、跳数等信息计算修正系数,采用动态加权的方法将不同方向上的修正系数进行整合,修正未知节点与锚节点间累计跳段距离,提高算法的定位精度。通过仿真验证了算法具有更高的定位精度;并进一步通过实验验证了算法的有效性和可行性。 展开更多
关键词 无线传感器网络 DV—Distance定位算法 动态加权 修正模式 修正模型
在线阅读 下载PDF
改进的无线传感器网络DV-Distance定位算法 被引量:1
7
作者 李桔鸿 谢睿 +1 位作者 陈向东 肖航 《通信技术》 2012年第3期52-54,共3页
针对DV-Distance定位算法受网络拓扑结构和环境噪声影响大等问题,从2个方面对算法进行了改进。改进的DV-Distance算法在原算法基础上,通过设定共线度阈值来优化多跳网络中定位锚节点分组的选择,使其能更好的适应低密度、不规则网络,并... 针对DV-Distance定位算法受网络拓扑结构和环境噪声影响大等问题,从2个方面对算法进行了改进。改进的DV-Distance算法在原算法基础上,通过设定共线度阈值来优化多跳网络中定位锚节点分组的选择,使其能更好的适应低密度、不规则网络,并利用最小二乘算法与泰勒级数展开法相结合方法来估计最终位置,从而提高算法的鲁棒性。仿真结果表明,改进算法与原算法相比,具有更高的定位精度,并且在锚节点数量比较小和节点密度低情况下,仍具有较好的定位性能。 展开更多
关键词 无线传感器网络 定位算法 dv-distance
原文传递
传感器网络中改进的DV-distance定位算法
8
作者 熊少英 于翔 +2 位作者 刘乃安 曹鹏 贺阳 《数字技术与应用》 2011年第10期111-112,共2页
由于DV-distance算法是用累计距离代替直线距离,在网络节点稀疏的环境下两者之间的误差很大,从而导致定位误差很大。所以DV-distance算法仅适用于同性密集网络。本文主要针对DV-distance算法这种只能适用于同性密集网络[1]的缺点,根据... 由于DV-distance算法是用累计距离代替直线距离,在网络节点稀疏的环境下两者之间的误差很大,从而导致定位误差很大。所以DV-distance算法仅适用于同性密集网络。本文主要针对DV-distance算法这种只能适用于同性密集网络[1]的缺点,根据三角形两边和大于第三边的原理,引入了约束条件,从而剔除一些误差较大的点的组合,最后用质心法求解待定位节点的坐标,从而提高DV-distance在网络节点稀疏互通性差的环境下的定位精度。 展开更多
关键词 dv-distance算法 约束条件 累计距离
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
9
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
10
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
11
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
12
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
13
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
14
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
15
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
16
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
Rapid pathologic grading-based diagnosis of esophageal squamous cell carcinoma via Raman spectroscopy and a deep learning algorithm 被引量:1
17
作者 Xin-Ying Yu Jian Chen +2 位作者 Lian-Yu Li Feng-En Chen Qiang He 《World Journal of Gastroenterology》 2025年第14期32-46,共15页
BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e... BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification. 展开更多
关键词 Raman spectroscopy Esophageal neoplasia Early diagnosis Deep learning algorithm Rapid pathologic grading
暂未订购
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
18
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
19
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
20
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部