ZnO nanowires(ZnO NWs),ZnO nanoparticles(ZnO NPs)and carbon dots(C-dots)were synthesized by hydrothermal,sol-gel and hydrothermal methods respectively.They were also characterized and applied for dye sensitized solar ...ZnO nanowires(ZnO NWs),ZnO nanoparticles(ZnO NPs)and carbon dots(C-dots)were synthesized by hydrothermal,sol-gel and hydrothermal methods respectively.They were also characterized and applied for dye sensitized solar cells(DSSCs).The effects of C-dots on ZnO NWs and ZnO NPs have been evaluated.The C-dots were used at a mole ratio of citric acid(CA)to ethylene diamine(EDA)of 1:1.5.These C-dots were found to enhance the performance of the flexible electrode DSSCs.After the addition of C-dots,the power conversion efficiency(PCE)of ZnO NPs was boosted to be two times higher than that of ZnO NPs DSSCs without C-dots.Similarly,the ultraviolet(UV)-band revealed a blue shift,resulting in a lower band gap and a reduced charge transfer resistance,which can enhance the PCE of DSSCs.The loaded quantity on the flexible electrode substrate made of polyethylene terephthalate(PET)was optimized(50 mg).For DSSCs,the PET flexible electrode conductive polymer has produced positive outcomes.For ZnO NWs and ZnO NWs@C-dots,the PCE values were 1.45%and 4.25%;while for ZnO NPs and ZnO NPs@C-dots,they were 2.34%and 5.81%,respectively.This work achieved remarkable and competitive performance when compared to solid(indium tin oxides/glass)-based substrate.展开更多
Flexible polymer-based dye-sensitized solar cells (DSSCs) offer promising potential for lightweight, cost-effective and versatile photovoltaic applications. However, the critical challenge in their widespread applicat...Flexible polymer-based dye-sensitized solar cells (DSSCs) offer promising potential for lightweight, cost-effective and versatile photovoltaic applications. However, the critical challenge in their widespread applications is the weak thermal stability of most polymeric substrates, which can only withstand a maximum temperature processing of 150˚C. In this study, a facile and low-cost strategy is proposed to develop at low temperature DSSC flexible photoanode based on a polymeric matrix. Highly porous nanocomposites fibrous mats composed of polyethylene terephthalate (PET) and titanium dioxide (TiO2) nanobars were prepared through an electrospinning process using different configurations (uniaxial electrospinning, coaxial electrospinning, and electrospray-assisted electrospinning). These techniques enabled precise control of the microstructure and the positioning of TiO2 within the composite nanofibers. Therefore, the as-produced photoanodes were loaded with N719 dye and tested in DSSC prototype using iodide-triiodide electrolyte and platinum (Pt) coated counter electrode. The results show that incorporating TiO2 on the fiber surface through the electrospray-assisted electrospinning enhanced the performance of the nanofiber composite, leading to improved dye loading capacity, electron transfer efficiency and photovoltaic performance.展开更多
Carbon materials are effective substitutes for Pt counter electrodes(CEs) in dye-sensitized solar cells(DSSCs). However, many of these materials, such as carbon nanotubes and graphene, are expensive and require comple...Carbon materials are effective substitutes for Pt counter electrodes(CEs) in dye-sensitized solar cells(DSSCs). However, many of these materials, such as carbon nanotubes and graphene, are expensive and require complex preparation process. Herein, waste lignin, recycled from hazardous black liquors,is used to create oxygen-nitrogen-sulfur codoped carbon microspheres for use in DSSC CEs through the facile process of low-temperature preoxidation and high-temperature self-activation. The large number of ester bonds formed by preoxidation increase the degree of cross-linking of the lignin chains, leading to the formation of highly disordered carbon with ample defect sites during pyrolysis. The presence of organic O/N/S components in the waste lignin results in high O/N/S doping of the pyrolysed carbon,which increases the electrolyte ion adsorption and accelerates the electron transfer at the CE/electrolyte interface, as confirmed by density functional theory(DFT) calculations. The presence of inorganic impurities enables the construction of a hierarchical micropore-rich carbon structure through the etching effect during self-activation, which can provide abundant catalytically active sites for the reversible adsorption/desorption of electrolyte ions. Under these synergistic effects, the DSSCs that use this novel carbon CE achieve a quite high power-conversion efficiency of 9.22%. To the best of our knowledge, the value is a new record reported so far for biomass-carbon-based DSSCs.展开更多
The aligned hexagonal cadmium sulfide nanorods (CdSNR) have been synthe-sized by hydrothermal technique at 200ºC on fluorine tin oxide (FTO) sub-strates. Dye sensitized solar cells (DSSCs) based on the photoel...The aligned hexagonal cadmium sulfide nanorods (CdSNR) have been synthe-sized by hydrothermal technique at 200ºC on fluorine tin oxide (FTO) sub-strates. Dye sensitized solar cells (DSSCs) based on the photoelectrode core-shell CdSNR array with conductive polymers nanocomposite of polyaniline (PANI) and poly(3,4-ethylenedioxyl-thiophene)/poly(styrene-sulfonate) (PEDOT:PSS) were fabricated and designed with different types of dye molecules. DSSCs were characterized utilizing scanning electron microscopy (SEM), Raman scattering, energy dispersive spectroscopy (EDS), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and photocurrent-voltage (J-V) characteristic. Results show that under illumination (AM 1.5 G), the high power conversion energy (PCE) was achieved for CdSNR/PANI-PEDOT:PSS device when it sensitized with ruthenium (II) (dye N-719) of 0.91% and a short circuit current density (Jsc) of 4.21 mA/cm2 in comparison with the other devices, which sensitized with natural dyes. The high performance of the CdSNR/PANI-PEDOT:PSS-N719 device attributed to the wide range of absorption and photostability for N719. This work shows that the CdSNR with N719 can be appropriate candidate for photovoltaics device for their low cost fabrication procedure and excellent absorption.展开更多
A series of guanidinium ionic liquids(GILs) was designed, synthesized, and used as electrolytes for dye-sensitized solar cells(DSSCs). The effect of electrolytes containing GILs on the photovoltaic performance of ...A series of guanidinium ionic liquids(GILs) was designed, synthesized, and used as electrolytes for dye-sensitized solar cells(DSSCs). The effect of electrolytes containing GILs on the photovoltaic performance of DSSCs was investigated. It is demonstrated that these GILs are promising for being used as electrolytes for DSSCs and a conversion efficiency of 4.1% can be obtained under AM 1.5 sun light irradiation.展开更多
Herein, we report the design and synthesis of three new D-A type metal-free carbazole based dyes(S1-3)as effective co-sensitizers for dye-sensitized solar cell(DSSC) sensitized with Ru(Ⅱ) complex(NCSU-10).In ...Herein, we report the design and synthesis of three new D-A type metal-free carbazole based dyes(S1-3)as effective co-sensitizers for dye-sensitized solar cell(DSSC) sensitized with Ru(Ⅱ) complex(NCSU-10).In this new design, the electron rich carbazole unit was attached to three different electron withdrawing/anchoring species, viz. 4-amino benzoic acid, sulfanilic acid and barbituric acid. The dyes were characterized by spectral, photophysical and electrochemical analysis. Their optical and electrochemical parameters along with molecular geometries, optimized from DFT have been employed to apprehend the effect of the structures of these co-sensitizers on the photovoltaic performances. Further, S1-3 dyes were co-sensitized along with a well-known NCSU-10 dye in order to broaden the spectral response of the co-sensitized devices and hence improve the efficiency. The photovoltaic performance studies indicated that, the device fabricated using S1 dye as co-sensitizer with 0.2 mM of NCSU-10 exhibited improved PCE of 9.55% with JSC of 22.85 mA cm-2, VOC of 0.672 V and FF of 62.2%, whereas the DSSC fabricated with dye NCSU-10(0.2 mM) alone displayed PCE of 8.25% with JSC of 20.41 mA cm-2, VOC of 0.667 V and FF of 60.6%. Furthermore, electronic excitations simulated using time-dependent DFT, were in good agreement with the experimentally obtained results of the co-sensitizers, indicating that the exchange-correlation function and basis set utilized for predicting the spectra of the co-sensitizers are quite appropriate for the calculations. In conclusion, the results showed the potential of simple organic co-sensitizers in the development of efficient DSSCs.展开更多
A feasible approach to rectify the world's energy demand using sustainable development of adequate energy generation and storage technologies in a single channel.In this respect,we made a holistic approach with a ...A feasible approach to rectify the world's energy demand using sustainable development of adequate energy generation and storage technologies in a single channel.In this respect,we made a holistic approach with a bifunctional electrode material to perform effectively in energy generation and storage applications.MoS_(2) nanosheets were produced by the eco-friendly method and reduced graphene oxide is used to prepared by carbon soot which is derived from castor oil.The prepared soot and rGO were combined with MoS_(2) nanosheets using a simple sonication method.The as-prepared sample was introduced in the supercapacitor and DSSC application.The combination MoS_(2)@rGO provides an enhanced conversion efficiency of 11.81%and the reproducibility of DSSC is also studied.Further,MoS_(2)@rGO is used to fabricate an asymmetric supercapacitor to investigate its real-time application.The device produced the maximum power density(1666.6 mW/kg)and energy density(25.69 mWh/Kg)at 1 A/g.The asymmetric supercapacitor device holds a cyclic stability of 81.4%for 5000 cycles and it powered up an LED device for 4 min.展开更多
反蛋白石结构是优化的光子晶体(photonic crystals),利用其光带隙效应和三维有序大孔(three-dimensional ordered macropores,3DOM)结构,其应用目前已扩展到光伏太阳能电池、染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)、光...反蛋白石结构是优化的光子晶体(photonic crystals),利用其光带隙效应和三维有序大孔(three-dimensional ordered macropores,3DOM)结构,其应用目前已扩展到光伏太阳能电池、染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)、光催化等光(电)化学领域,大大提高了这些过程中的太阳光利用效率。过渡金属氧化物(transition metal oxides,TMOs)是高折射率的半导体材料,在可见光区吸收系数小,很适合用于制备高性能光子晶体。TMOs反蛋白石的制备方法,如:溶胶-凝胶法、金属盐热解法和液相沉积法,电化学沉积法,电泳法,化学气相沉积法(CVD),原子层沉积法(ALD)等,各有其独特的优点也有其本身固有的缺陷。本文对TMOs反蛋白石材料,从制备、性能及其在DSSCs、光催化等过程中应用的角度,对其研究进展进行综述。展开更多
文摘ZnO nanowires(ZnO NWs),ZnO nanoparticles(ZnO NPs)and carbon dots(C-dots)were synthesized by hydrothermal,sol-gel and hydrothermal methods respectively.They were also characterized and applied for dye sensitized solar cells(DSSCs).The effects of C-dots on ZnO NWs and ZnO NPs have been evaluated.The C-dots were used at a mole ratio of citric acid(CA)to ethylene diamine(EDA)of 1:1.5.These C-dots were found to enhance the performance of the flexible electrode DSSCs.After the addition of C-dots,the power conversion efficiency(PCE)of ZnO NPs was boosted to be two times higher than that of ZnO NPs DSSCs without C-dots.Similarly,the ultraviolet(UV)-band revealed a blue shift,resulting in a lower band gap and a reduced charge transfer resistance,which can enhance the PCE of DSSCs.The loaded quantity on the flexible electrode substrate made of polyethylene terephthalate(PET)was optimized(50 mg).For DSSCs,the PET flexible electrode conductive polymer has produced positive outcomes.For ZnO NWs and ZnO NWs@C-dots,the PCE values were 1.45%and 4.25%;while for ZnO NPs and ZnO NPs@C-dots,they were 2.34%and 5.81%,respectively.This work achieved remarkable and competitive performance when compared to solid(indium tin oxides/glass)-based substrate.
文摘Flexible polymer-based dye-sensitized solar cells (DSSCs) offer promising potential for lightweight, cost-effective and versatile photovoltaic applications. However, the critical challenge in their widespread applications is the weak thermal stability of most polymeric substrates, which can only withstand a maximum temperature processing of 150˚C. In this study, a facile and low-cost strategy is proposed to develop at low temperature DSSC flexible photoanode based on a polymeric matrix. Highly porous nanocomposites fibrous mats composed of polyethylene terephthalate (PET) and titanium dioxide (TiO2) nanobars were prepared through an electrospinning process using different configurations (uniaxial electrospinning, coaxial electrospinning, and electrospray-assisted electrospinning). These techniques enabled precise control of the microstructure and the positioning of TiO2 within the composite nanofibers. Therefore, the as-produced photoanodes were loaded with N719 dye and tested in DSSC prototype using iodide-triiodide electrolyte and platinum (Pt) coated counter electrode. The results show that incorporating TiO2 on the fiber surface through the electrospray-assisted electrospinning enhanced the performance of the nanofiber composite, leading to improved dye loading capacity, electron transfer efficiency and photovoltaic performance.
基金supported by the National Natural Science Foundation of China (31890771 and 31901249)the Young Elite Scientists Sponsorship Program by CAST (2019QNRC001)+3 种基金the Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology (2020RC3041)the Training Program for Excellent Young Innovators of Changsha (kq2106056)the Hunan Provincial Natural Science Foundation of China (2022JJ30079)the Postgraduate Technology Innovation Project of Central South University of Forestry and Technology (2022CX02017)。
文摘Carbon materials are effective substitutes for Pt counter electrodes(CEs) in dye-sensitized solar cells(DSSCs). However, many of these materials, such as carbon nanotubes and graphene, are expensive and require complex preparation process. Herein, waste lignin, recycled from hazardous black liquors,is used to create oxygen-nitrogen-sulfur codoped carbon microspheres for use in DSSC CEs through the facile process of low-temperature preoxidation and high-temperature self-activation. The large number of ester bonds formed by preoxidation increase the degree of cross-linking of the lignin chains, leading to the formation of highly disordered carbon with ample defect sites during pyrolysis. The presence of organic O/N/S components in the waste lignin results in high O/N/S doping of the pyrolysed carbon,which increases the electrolyte ion adsorption and accelerates the electron transfer at the CE/electrolyte interface, as confirmed by density functional theory(DFT) calculations. The presence of inorganic impurities enables the construction of a hierarchical micropore-rich carbon structure through the etching effect during self-activation, which can provide abundant catalytically active sites for the reversible adsorption/desorption of electrolyte ions. Under these synergistic effects, the DSSCs that use this novel carbon CE achieve a quite high power-conversion efficiency of 9.22%. To the best of our knowledge, the value is a new record reported so far for biomass-carbon-based DSSCs.
文摘The aligned hexagonal cadmium sulfide nanorods (CdSNR) have been synthe-sized by hydrothermal technique at 200ºC on fluorine tin oxide (FTO) sub-strates. Dye sensitized solar cells (DSSCs) based on the photoelectrode core-shell CdSNR array with conductive polymers nanocomposite of polyaniline (PANI) and poly(3,4-ethylenedioxyl-thiophene)/poly(styrene-sulfonate) (PEDOT:PSS) were fabricated and designed with different types of dye molecules. DSSCs were characterized utilizing scanning electron microscopy (SEM), Raman scattering, energy dispersive spectroscopy (EDS), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and photocurrent-voltage (J-V) characteristic. Results show that under illumination (AM 1.5 G), the high power conversion energy (PCE) was achieved for CdSNR/PANI-PEDOT:PSS device when it sensitized with ruthenium (II) (dye N-719) of 0.91% and a short circuit current density (Jsc) of 4.21 mA/cm2 in comparison with the other devices, which sensitized with natural dyes. The high performance of the CdSNR/PANI-PEDOT:PSS-N719 device attributed to the wide range of absorption and photostability for N719. This work shows that the CdSNR with N719 can be appropriate candidate for photovoltaics device for their low cost fabrication procedure and excellent absorption.
文摘A series of guanidinium ionic liquids(GILs) was designed, synthesized, and used as electrolytes for dye-sensitized solar cells(DSSCs). The effect of electrolytes containing GILs on the photovoltaic performance of DSSCs was investigated. It is demonstrated that these GILs are promising for being used as electrolytes for DSSCs and a conversion efficiency of 4.1% can be obtained under AM 1.5 sun light irradiation.
基金Department of Textile Engineering, Chemistry and Science at North Carolina State University for the financial support
文摘Herein, we report the design and synthesis of three new D-A type metal-free carbazole based dyes(S1-3)as effective co-sensitizers for dye-sensitized solar cell(DSSC) sensitized with Ru(Ⅱ) complex(NCSU-10).In this new design, the electron rich carbazole unit was attached to three different electron withdrawing/anchoring species, viz. 4-amino benzoic acid, sulfanilic acid and barbituric acid. The dyes were characterized by spectral, photophysical and electrochemical analysis. Their optical and electrochemical parameters along with molecular geometries, optimized from DFT have been employed to apprehend the effect of the structures of these co-sensitizers on the photovoltaic performances. Further, S1-3 dyes were co-sensitized along with a well-known NCSU-10 dye in order to broaden the spectral response of the co-sensitized devices and hence improve the efficiency. The photovoltaic performance studies indicated that, the device fabricated using S1 dye as co-sensitizer with 0.2 mM of NCSU-10 exhibited improved PCE of 9.55% with JSC of 22.85 mA cm-2, VOC of 0.672 V and FF of 62.2%, whereas the DSSC fabricated with dye NCSU-10(0.2 mM) alone displayed PCE of 8.25% with JSC of 20.41 mA cm-2, VOC of 0.667 V and FF of 60.6%. Furthermore, electronic excitations simulated using time-dependent DFT, were in good agreement with the experimentally obtained results of the co-sensitizers, indicating that the exchange-correlation function and basis set utilized for predicting the spectra of the co-sensitizers are quite appropriate for the calculations. In conclusion, the results showed the potential of simple organic co-sensitizers in the development of efficient DSSCs.
基金financial support by MHRD-SPARC-890(2019)UAE for financial support+1 种基金the full financial support by MHRD-SPARC-890(2019)the instrumentation facility utilized from RUSA 2.0 grant No.F.24-51/2014-U,Policy(TNMultiGen)Govt of India Projects。
文摘A feasible approach to rectify the world's energy demand using sustainable development of adequate energy generation and storage technologies in a single channel.In this respect,we made a holistic approach with a bifunctional electrode material to perform effectively in energy generation and storage applications.MoS_(2) nanosheets were produced by the eco-friendly method and reduced graphene oxide is used to prepared by carbon soot which is derived from castor oil.The prepared soot and rGO were combined with MoS_(2) nanosheets using a simple sonication method.The as-prepared sample was introduced in the supercapacitor and DSSC application.The combination MoS_(2)@rGO provides an enhanced conversion efficiency of 11.81%and the reproducibility of DSSC is also studied.Further,MoS_(2)@rGO is used to fabricate an asymmetric supercapacitor to investigate its real-time application.The device produced the maximum power density(1666.6 mW/kg)and energy density(25.69 mWh/Kg)at 1 A/g.The asymmetric supercapacitor device holds a cyclic stability of 81.4%for 5000 cycles and it powered up an LED device for 4 min.
文摘反蛋白石结构是优化的光子晶体(photonic crystals),利用其光带隙效应和三维有序大孔(three-dimensional ordered macropores,3DOM)结构,其应用目前已扩展到光伏太阳能电池、染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)、光催化等光(电)化学领域,大大提高了这些过程中的太阳光利用效率。过渡金属氧化物(transition metal oxides,TMOs)是高折射率的半导体材料,在可见光区吸收系数小,很适合用于制备高性能光子晶体。TMOs反蛋白石的制备方法,如:溶胶-凝胶法、金属盐热解法和液相沉积法,电化学沉积法,电泳法,化学气相沉积法(CVD),原子层沉积法(ALD)等,各有其独特的优点也有其本身固有的缺陷。本文对TMOs反蛋白石材料,从制备、性能及其在DSSCs、光催化等过程中应用的角度,对其研究进展进行综述。