期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于STL-DSCNN重构GRACE数据的东北地区陆地水储量变化分析
1
作者 岳志铖 周洋 +1 位作者 戴长雷 刘庚炜 《黑龙江大学工程学报(中英俄文)》 2025年第1期71-79,86,共10页
陆地水是水资源利用和生态安全的基础。利用降水、径流、蒸散发、气温以及陆地水储量作为驱动数据,构建STL-DSCNN模型,填补GRACE和GRACE-FO之间11个月的缺失数据,结合GLDAS完成东北地区陆地水储量变化(TWSA)的全时间序列并进行分析。结... 陆地水是水资源利用和生态安全的基础。利用降水、径流、蒸散发、气温以及陆地水储量作为驱动数据,构建STL-DSCNN模型,填补GRACE和GRACE-FO之间11个月的缺失数据,结合GLDAS完成东北地区陆地水储量变化(TWSA)的全时间序列并进行分析。结果显示STL-DSCNN模型可以更好地捕捉陆地水储存的趋势和季节性,相较于STL提高了39%,比DSCNN提高了5%。利用Mann-Kendall趋势分析及EOF方法分析得出东北地区内的TWSA存在明显空间变化,吉林省和辽宁省呈下降趋势,黑龙江省呈上升趋势,内蒙古东部地区相对稳定。研究结果可为掌握东北地区的陆地水储量变化规律和合理优化水资源配置提供依据。 展开更多
关键词 GRACE/FO STL-dscnn GLDAS 陆地水储量变化
在线阅读 下载PDF
基于T-DSCNN的故障选线方法研究
2
作者 鲁玉海 《电工技术》 2024年第22期193-196,共4页
研究了一种基于迁移深度可分离卷积神经网络(T-DSCNN)的故障选线方法,旨在提高电力系统中故障选线的准确性和效率。通过引入迁移学习的概念,T-DSCNN能够利用预训练的模型参数作为初始权重,加速模型的训练过程并提高其泛化能力。深度可... 研究了一种基于迁移深度可分离卷积神经网络(T-DSCNN)的故障选线方法,旨在提高电力系统中故障选线的准确性和效率。通过引入迁移学习的概念,T-DSCNN能够利用预训练的模型参数作为初始权重,加速模型的训练过程并提高其泛化能力。深度可分离卷积技术的应用减少了模型的参数量,降低了计算复杂度,从而使得模型在保持高准确率的同时更适用于实时故障选线的应用场景。在基于标准数据集的故障选线测试中,T-DSCNN表现出了优异的性能,识别速度和准确率高于传统卷积神经网络和其他故障选线方法。 展开更多
关键词 T-dscnn 故障选线 迁移学习 融合图像
在线阅读 下载PDF
Hybrid Attention-Driven Transfer Learning with DSCNN for Cross-Domain Bearing Fault Diagnosis under Variable Operating Conditions
3
作者 Qiang Ma Zepeng Li +2 位作者 Kai Yang Shaofeng Zhang Zhuopei Wei 《Structural Durability & Health Monitoring》 2025年第6期1607-1634,共28页
Effective fault identification is crucial for bearings, which are critical components of mechanical systems and play a pivotal role in ensuring overall safety and operational efficiency. Bearings operate under variabl... Effective fault identification is crucial for bearings, which are critical components of mechanical systems and play a pivotal role in ensuring overall safety and operational efficiency. Bearings operate under variable service conditions, and their diagnostic environments are complex and dynamic. In the process of bearing diagnosis, fault datasets are relatively scarce compared with datasets representing normal operating conditions. These challenges frequently cause the practicality of fault detection to decline, the extraction of fault features to be incomplete, and the diagnostic accuracy of many existing models to decrease. In this work, a transfer-learning framework, designated DSCNN-HA-TL, is introduced to address the enduring challenge of cross-condition diagnosis in rolling-bearing fault detection. The framework integrates a window global mixed attention mechanism with a deep separable convolutional network, thereby enabling adaptation to fault detection tasks under diverse operating conditions. First, a Convolutional Neural Network (CNN) is employed as the foundational architecture, where the original convolutional layers are enhanced through the incorporation of depthwise separable convolutions, resulting in a Depthwise Separable Convolutional Neural Network (DSCNN) architecture. Subsequently, the extraction of fault characteristics is further refined through a dual-branch network that integrates hybrid attention mechanisms, specifically windowed and global attention mechanisms. This approach enables the acquisition of multi-level feature fusion information, thereby enhancing the accuracy of fault classification. The integration of these features not only optimizes the characteristic extraction process but also yields improvements in accuracy, representational capacity, and robustness in fault feature recognition. In conclusion, the proposed method achieved average precisions of 99.93% and 99.55% in transfer learning tasks, as demonstrated by the experimental results obtained from the CWRU public dataset and the bearing fault detection platform dataset. The experimental findings further provided a detailed comparison between the diagnostic models before and after the enhancement, thereby substantiating the pronounced advantages of the DSCNN-HA-TL approach in accurately identifying faults in critical mechanical components under diverse operating conditions. 展开更多
关键词 Bearing fault diagnosis transfer learning hybrid attention mechanism dscnn variable operating condition
在线阅读 下载PDF
融合多尺度注意力神经网络的港口起重装备故障时序数据预测方法 被引量:2
4
作者 雷鹏 谢敬玲 +4 位作者 许洪祖 焦锋 魏立明 张忠岩 吕成兴 《机电工程》 北大核心 2025年第2期277-286,共10页
近年来,深度神经网络在轴承时序预测领域得到了广泛应用。为了进一步提升港口起重装备滚动轴承时序模型预测的准确度,以青岛港门机为例对港口起重装备关键部位的滚动轴承时序预测进行了建模,提出了一种融合改进变分模态分解的多尺度注... 近年来,深度神经网络在轴承时序预测领域得到了广泛应用。为了进一步提升港口起重装备滚动轴承时序模型预测的准确度,以青岛港门机为例对港口起重装备关键部位的滚动轴承时序预测进行了建模,提出了一种融合改进变分模态分解的多尺度注意力机制港口装备故障时序数据预测方法。首先,采用了融合非线性策略与混沌映射的改进灰狼优化算法(IGWO),自适应地确定了变分模态分解(VMD)的模态数与惩罚因子;然后,将变分模态分解得到的本征模态函数进一步作为融合多尺度注意力神经网络(FMANN)模型的时序输入,进行了多尺度通道特征融合;最后,对各个本征模态函数的预测结果进行了融合,得到了最终预测结果。研究结果表明:FMANN模型在回转机构数据集上的均方根误差(RMSE)为0.001 12,平均绝对百分比误差(MAPE)为6.396 3%,决定系数为0.999 8;相比于其他预测模型,FMANN预测效果更加拟合实际数据。FMANN模型能够准确地预测设备轴承的时序振动,有望为未来实际工业生产提供一条新思路。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 注意力机制 灰狼优化算法 融合多尺度注意力神经网络 深度可分离卷积
在线阅读 下载PDF
深度可分离卷积神经网络轴承剩余寿命预测 被引量:3
5
作者 步伟顺 姚磊 +1 位作者 唐苑寿 刘国威 《机械设计与制造》 北大核心 2022年第12期120-122,共3页
深度学习因其强大的学习能力使得数据驱动的轴承剩余寿命预测方法发展迅速,人工建立性能退化指标费时费力,缺少不同传感器数据之间相关性的考虑;宜采用一种新的深度可分卷积神经网络DSCNN(Deeply Separable Convolutional Neural Networ... 深度学习因其强大的学习能力使得数据驱动的轴承剩余寿命预测方法发展迅速,人工建立性能退化指标费时费力,缺少不同传感器数据之间相关性的考虑;宜采用一种新的深度可分卷积神经网络DSCNN(Deeply Separable Convolutional Neural Network),将多种传感器采集的监测数据作为DSCNN网络输入,基于可分离卷积和信息特征响应自动调节运算,构造具有残差连接功能可分离卷积构造块。通过叠加多个可分离的卷积构造块,从输入数据中自动学习高维表示。通过将学习到的信息输入到完全连接的输出层来估计RUL(Remaining Useful Life)。利用滚动轴承加速退化试验振动数据对所提出的DSCNN进行了验证。实验结果表明,所提出的DSCNN能够基于原始的多传感器数据提供准确的RUL预测结果,并且优于现有数据驱动预测方法。 展开更多
关键词 深度学习 卷积网络 轴承 剩余寿命 dscnn RUL
在线阅读 下载PDF
Sunspot Group Detection and Classification by Dual Stream Convolutional Neural Network Method
6
作者 Nyasha Mariam Mkwanda Weixin Tian Junlin Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第9期248-259,共12页
The automatic detection and analysis of sunspots play a crucial role in understanding solar dynamics and predicting space weather events.This paper proposes a novel method for sunspot group detection and classificatio... The automatic detection and analysis of sunspots play a crucial role in understanding solar dynamics and predicting space weather events.This paper proposes a novel method for sunspot group detection and classification called the dual stream Convolutional Neural Network with Attention Mechanism(DSCNN-AM).The network consists of two parallel streams each processing different input data allowing for joint processing of spatial and temporal information while classifying sunspots.It takes in the white light images as well as the corresponding magnetic images that reveal both the optical and magnetic features of sunspots.The extracted features are then fused and processed by fully connected layers to perform detection and classification.The attention mechanism is further integrated to address the“edge dimming”problem which improves the model’s ability to handle sunspots near the edge of the solar disk.The network is trained and tested on the SOLAR-STORM1 data set.The results demonstrate that the DSCNN-AM achieves superior performance compared to existing methods,with a total accuracy exceeding 90%. 展开更多
关键词 Sun:magnetic fields Sun:flares (Sun:)sunspots dscnn Attention mechanism Edge dimming
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部