提出了一种离散奇异卷积(DSC:D iscrete S ingu lar Convolution)方法来对基于M ind lin剪切变形理论的矩形厚板进行自由振动分析。此方法采用了Gauss delta序列核作为基函数并结合pb-2 Rayle igh-R itz方法(pb-2指的是a two-d im ensio...提出了一种离散奇异卷积(DSC:D iscrete S ingu lar Convolution)方法来对基于M ind lin剪切变形理论的矩形厚板进行自由振动分析。此方法采用了Gauss delta序列核作为基函数并结合pb-2 Rayle igh-R itz方法(pb-2指的是a two-d im ensional polynom ial function(p-2)and a boundary function(b))的边界函数得到了一种新型的R itz方法。数值结果表明此方法相当精确有效。展开更多
An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimens...An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimensional Navier-Stokes equations with periodic boundary conditions and Euler equations for doubly periodic shear layer flows are carried out by using the DSC method for spatial derivatives and fourth-order Runge-Kutta method for time advancement, respectively. The computational results show that the DSC method is efficient and robust for solving tho problems of incompressible flows, and has the potential of being extended to numerically solve much broader problems in fluid dynamics.展开更多
以醋酸乙烯酯、丙烯酸丁酯、丙烯酰胺为单体,通过半连续乳液聚合方法制备PVC皮革用胶黏剂,借助非等温DSC法(差示扫描量热法)研究共聚乳液的固化过程。使用Kissinger方程、Crane方程和T-β(温度-升温速率)外推法,计算共聚乳液体系固化反...以醋酸乙烯酯、丙烯酸丁酯、丙烯酰胺为单体,通过半连续乳液聚合方法制备PVC皮革用胶黏剂,借助非等温DSC法(差示扫描量热法)研究共聚乳液的固化过程。使用Kissinger方程、Crane方程和T-β(温度-升温速率)外推法,计算共聚乳液体系固化反应的动力学参数和固化温度。结果表明,共聚乳液体系固化反应的表观活化能为51.71 k J/mol,指前因子为2.79×106S^(-1),反应级数为0.889,最佳固化温度为295.4 K。展开更多
文摘提出了一种离散奇异卷积(DSC:D iscrete S ingu lar Convolution)方法来对基于M ind lin剪切变形理论的矩形厚板进行自由振动分析。此方法采用了Gauss delta序列核作为基函数并结合pb-2 Rayle igh-R itz方法(pb-2指的是a two-d im ensional polynom ial function(p-2)and a boundary function(b))的边界函数得到了一种新型的R itz方法。数值结果表明此方法相当精确有效。
基金The project supported by the National Natural Science Foundation of China(No.19902010)
文摘An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimensional Navier-Stokes equations with periodic boundary conditions and Euler equations for doubly periodic shear layer flows are carried out by using the DSC method for spatial derivatives and fourth-order Runge-Kutta method for time advancement, respectively. The computational results show that the DSC method is efficient and robust for solving tho problems of incompressible flows, and has the potential of being extended to numerically solve much broader problems in fluid dynamics.
文摘以醋酸乙烯酯、丙烯酸丁酯、丙烯酰胺为单体,通过半连续乳液聚合方法制备PVC皮革用胶黏剂,借助非等温DSC法(差示扫描量热法)研究共聚乳液的固化过程。使用Kissinger方程、Crane方程和T-β(温度-升温速率)外推法,计算共聚乳液体系固化反应的动力学参数和固化温度。结果表明,共聚乳液体系固化反应的表观活化能为51.71 k J/mol,指前因子为2.79×106S^(-1),反应级数为0.889,最佳固化温度为295.4 K。