Banana fruit ripening is a highly regulatory process involving various layers consisting of transcriptional regulation,epigenetic factor,and post-translational modification.Previously,we reported that MaERF11 cooperat...Banana fruit ripening is a highly regulatory process involving various layers consisting of transcriptional regulation,epigenetic factor,and post-translational modification.Previously,we reported that MaERF11 cooperated with MaHDA1 to precisely regulate the transcription of ripening-associated genes via histone deacetylation.However,whether MaERF11 is subjected to post-translational modification during banana ripening is largely unknown.In this study,we found that MaERF11 targeted a subset of starch degradation-related genes using the DNA affinity purification sequence(DAP-Seq)approach.Electrophoretic mobility shift assay(EMSA)and dual-luciferase reporter assay(DLR)demonstrated that MaERF11 could specifically bind and repress the expression of the starch degradation-related genes MaAMY3,MaBAM2 and MaGWD1.Further analyses of yeast two-hybrid(Y2H),bimolecular fluorescence complementation(BiFC)and Luciferase complementation imaging(LCI)assays indicated that MaERF11 interacted with the ubiquitin E3 ligase MaRFA1,and this interaction weakened the MaERF11-mediated transcriptional repression capacity.Collectively,our results suggest an additional regulatory layer in which MaERF11 regulates banana fruit ripening and expands the regulatory network in fruit ripening at the post-translational modification level.展开更多
BACKGROUND It is critical to explore effective therapeutic targets for improving the survival rate of patients with hepatocellular carcinoma(HCC).Although many studies have focused on flotillin-1(FLOT1)as a lipid raft...BACKGROUND It is critical to explore effective therapeutic targets for improving the survival rate of patients with hepatocellular carcinoma(HCC).Although many studies have focused on flotillin-1(FLOT1)as a lipid raft-associated protein that regulates the activation of some proteins or kinases to promote tumor cell survival and proliferation,few studies have explored the regulation of Golgi apparatus function.AIM To investigate the molecular mechanism through which FLOT1 activates the Golgi stress response downstream of transcription factor E3(TFE3),thereby promoting the progression of HCC.METHODS FLOT1 expression in HCC tissue,HCC cell lines,and nude mouse tumor models was assessed.The impact of FLOT1 silencing or its overexpression on the proliferation of HCC cells was studied.CCK-8,flow cytometry,and transwell assays were used to assess the proliferation,cell cycle,migration,and invasion abilities of HCC cells.A dual-luciferase reporter assay was used to study the effect of FLOT1 on the transcriptional activity of the downstream Golgi apparatus stress element promoter of TFE3.Western blotting,co-immunoprecipitation,and immunofluorescence staining were employed to detect relevant proteins.RESULTS High FLOT1 expression was correlated with a poor prognosis in patients with HCC.The knockdown of FLOT1 suppressed the proliferation,migration,and invasion of HCC cells and promoted their apoptosis.Xenograft assays revealed that FLOT1 knockdown inhibited HCC tumorigenesis in vivo.Mechanistically,FLOT1 inhibited the expression of mechanistic target of rapamycin complex 1/2 proteins through ubiquitination and downstream effector p-S6 kinase-T389,leading to the dephosphorylation and nuclear translocation of TFE3 and promotion of Golgi stress-mediated responses,ultimately resulting in HCC progression.CONCLUSION FLOT1 recruits and inhibits mechanistic target of rapamycin complex 1/2,causing dephosphorylation and TFE3 nuclear translocation,thereby activating the Golgi stress response and further promoting the proliferation,migration,and invasion capabilities of HCC cells.These results underscore the potential of FLOT1 as a promising therapeutic target for HCC.展开更多
In this editorial,we comment on the article by Zhang et al recently published in the World Journal of Gastroenterology.The manuscript elucidates significant novel mechanisms underlying hepatocellular carcinoma(HCC)pro...In this editorial,we comment on the article by Zhang et al recently published in the World Journal of Gastroenterology.The manuscript elucidates significant novel mechanisms underlying hepatocellular carcinoma(HCC)progression.HCC is currently considered one of the major causes of global cancer-associated deaths,underscoring the critical need for novel therapeutic targets.Growing evidence underlines the role of the lipid raft protein flotillin-1(FLOT1)in cancer,whose dysregulation drives tumor cell growth and survival.However,the regulatory role of FLOT1 on Golgi apparatus function in HCC is unknown.In this study,Zhang et al elucidated a pivotal mechanism by which FLOT1 promotes HCC progression through activation of transcription factor E3-mediated Golgi stress response.The study reveals that FLOT1 inhibits the mechanistic target of rapamycin complexes 1 and 2 by ubiquitination,facilitating transcription factor E3 dephosphorylation,nuclear translocation,and subsequent upregulation of Golgi stress-associated genes,thereby leading to enhanced HCC cell growth and invasive capacity.These findings obtained in vitro/in vivo highlight the interplay between FLOT1 and Golgi homeostasis in HCC.Targeting FLOT1 may offer a new strategy for the treatment of HCC.展开更多
OBJECTIVE:To investigate the mechanism of Dan Ze mixture(丹泽合剂,DZM)in the treatment of lipotoxic cardiomyopathy.METHODS:Ultra-performance liquid chromatography tandem mass spectrometry was employed to characterize ...OBJECTIVE:To investigate the mechanism of Dan Ze mixture(丹泽合剂,DZM)in the treatment of lipotoxic cardiomyopathy.METHODS:Ultra-performance liquid chromatography tandem mass spectrometry was employed to characterize the serum migration constituents of DZM.A lipotoxic cardiomyopathy rat model was established through high-fat diet and intervened by different doses of DZM.The cardiac function was assessed using echocardiography,and hematoxylin and eosin,oil red O,and Masson staining were conducted to evaluate morphological changes,lipid accumulation,and fibrosis in myocardial tissue.Serum myocardial enzyme activity,lipid levels,and lipid content of myocardial tissue were measured,while fluorescent staining and colorimetry were used to assess oxidation levels in myocardial tissue.Mitochondrial membrane potential was detected by 5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanineiodide(JC-1).Transmission electron microscopy was employed to observe ultrastructure and mitochondrial structure changes in myocardial tissue.Fluorescence double staining and colocalization were utilized to observe the binding of autophagosomes and mitochondria,while immunohistochemical staining was used to detect the expression of mitophagy-related proteins.Terminal deoxynucleoitidyl transferase mediated nick end labeling staining was employed for the identification of apoptosis in myocardial tissue,while quantitative real-time reverse transcriptase polymerase chain reaction(q RT-PCR)and Western blot were utilized for the detection of apoptosis,B-cell lymphoma-2 adenovirus E1B 19 k Da-interacting protein 3(BNIP3)/mitophagy signaling pathway-related genes and proteins.In palmitic acid-induced Rat H9C2 cardiomyocytes(H9c2)cells,various cellular parameters including cell viability,lactate dehydrogenase release,apoptosis rate,oxidative stress level,mitochondrial structure and function,and mitophagy level were assessed after the treatment of DZM drug-containing serum for a duration of 24 h.The cellular expressions of BNIP3/mitophagy signaling pathway relevant genes and proteins were further evaluated using q RT-PCR and Western blot techniques.RESULTS:A total of 295 prototypes(e.g.,phenolic acids,quinones,terpenoids)were identified in serum of rats after oral administration of DZM.In vivo,DZM therapy has been shown to effectively enhance cardiac function,mitigate high-fat diet-induced myocardial structural damage and lipid accumulation.Furthermore,DZM has demonstrated the ability to reduce lipid levels,attenuate cell apoptosis,combat oxidative stress,enhance mitochondrial structure and function,and activate the BNIP3/mitophagy signaling pathway.Furthermore,the silencing of BNIP3 has been shown to exacerbate palmitic acid-induced damages in H9c2 cells,while inhibiting the BNIP3/mitophagy signaling pathway can mitigate the inhibitory effects of DZM on palmitic acidinduced apoptosis,lipid deposition and oxidative stress.CONCLUSION:This study presents preliminary evidence for the therapeutic efficacy of DZM on lipotoxic cardiomyopathy through the activating BNIP3/mitophagy signaling pathway.展开更多
BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.S...BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.31830071,32202561)the earmarked fund for CARS(Grant No.CARS-31)。
文摘Banana fruit ripening is a highly regulatory process involving various layers consisting of transcriptional regulation,epigenetic factor,and post-translational modification.Previously,we reported that MaERF11 cooperated with MaHDA1 to precisely regulate the transcription of ripening-associated genes via histone deacetylation.However,whether MaERF11 is subjected to post-translational modification during banana ripening is largely unknown.In this study,we found that MaERF11 targeted a subset of starch degradation-related genes using the DNA affinity purification sequence(DAP-Seq)approach.Electrophoretic mobility shift assay(EMSA)and dual-luciferase reporter assay(DLR)demonstrated that MaERF11 could specifically bind and repress the expression of the starch degradation-related genes MaAMY3,MaBAM2 and MaGWD1.Further analyses of yeast two-hybrid(Y2H),bimolecular fluorescence complementation(BiFC)and Luciferase complementation imaging(LCI)assays indicated that MaERF11 interacted with the ubiquitin E3 ligase MaRFA1,and this interaction weakened the MaERF11-mediated transcriptional repression capacity.Collectively,our results suggest an additional regulatory layer in which MaERF11 regulates banana fruit ripening and expands the regulatory network in fruit ripening at the post-translational modification level.
基金Supported by the National Natural Science Foundation of China,No.82203806the General Hospital of Western Theater Command Project Funding,No.2024-YGJC-B10.
文摘BACKGROUND It is critical to explore effective therapeutic targets for improving the survival rate of patients with hepatocellular carcinoma(HCC).Although many studies have focused on flotillin-1(FLOT1)as a lipid raft-associated protein that regulates the activation of some proteins or kinases to promote tumor cell survival and proliferation,few studies have explored the regulation of Golgi apparatus function.AIM To investigate the molecular mechanism through which FLOT1 activates the Golgi stress response downstream of transcription factor E3(TFE3),thereby promoting the progression of HCC.METHODS FLOT1 expression in HCC tissue,HCC cell lines,and nude mouse tumor models was assessed.The impact of FLOT1 silencing or its overexpression on the proliferation of HCC cells was studied.CCK-8,flow cytometry,and transwell assays were used to assess the proliferation,cell cycle,migration,and invasion abilities of HCC cells.A dual-luciferase reporter assay was used to study the effect of FLOT1 on the transcriptional activity of the downstream Golgi apparatus stress element promoter of TFE3.Western blotting,co-immunoprecipitation,and immunofluorescence staining were employed to detect relevant proteins.RESULTS High FLOT1 expression was correlated with a poor prognosis in patients with HCC.The knockdown of FLOT1 suppressed the proliferation,migration,and invasion of HCC cells and promoted their apoptosis.Xenograft assays revealed that FLOT1 knockdown inhibited HCC tumorigenesis in vivo.Mechanistically,FLOT1 inhibited the expression of mechanistic target of rapamycin complex 1/2 proteins through ubiquitination and downstream effector p-S6 kinase-T389,leading to the dephosphorylation and nuclear translocation of TFE3 and promotion of Golgi stress-mediated responses,ultimately resulting in HCC progression.CONCLUSION FLOT1 recruits and inhibits mechanistic target of rapamycin complex 1/2,causing dephosphorylation and TFE3 nuclear translocation,thereby activating the Golgi stress response and further promoting the proliferation,migration,and invasion capabilities of HCC cells.These results underscore the potential of FLOT1 as a promising therapeutic target for HCC.
基金Supported by Italian Association for Cancer Research(AIRC),No.21956Italian Ministry of Health-5×1000 funds 2023.
文摘In this editorial,we comment on the article by Zhang et al recently published in the World Journal of Gastroenterology.The manuscript elucidates significant novel mechanisms underlying hepatocellular carcinoma(HCC)progression.HCC is currently considered one of the major causes of global cancer-associated deaths,underscoring the critical need for novel therapeutic targets.Growing evidence underlines the role of the lipid raft protein flotillin-1(FLOT1)in cancer,whose dysregulation drives tumor cell growth and survival.However,the regulatory role of FLOT1 on Golgi apparatus function in HCC is unknown.In this study,Zhang et al elucidated a pivotal mechanism by which FLOT1 promotes HCC progression through activation of transcription factor E3-mediated Golgi stress response.The study reveals that FLOT1 inhibits the mechanistic target of rapamycin complexes 1 and 2 by ubiquitination,facilitating transcription factor E3 dephosphorylation,nuclear translocation,and subsequent upregulation of Golgi stress-associated genes,thereby leading to enhanced HCC cell growth and invasive capacity.These findings obtained in vitro/in vivo highlight the interplay between FLOT1 and Golgi homeostasis in HCC.Targeting FLOT1 may offer a new strategy for the treatment of HCC.
基金Scientific Research Project of Hebei Province Administration of Traditional Chinese Medicine:to Explore the Protective Effect and Mechanism of Zexie Decoction on Lipotoxic Cardiomyopathy based on the p-mitogen-activated protein kinases/Peroxisome proliferator-activated receptorγcoactivator 1-alpha(p MAPK/PGC-1α)Signaling Pathway(No.2022096)Medical Science Research Project of Hebei Province:the Effect of 23-acetyl Alismol-B on Mitochondrial Function in Palmitic Acid-induced H9c2 Cells Was Investigated based on the Ca2+-Cyclic Adenosine Monophosphate(c AMP)-Response Element Binding Protein/c AMP Response Element(CREB/CRE)-PGC-1αSignaling Pathway(No.20221490)+1 种基金Hebei province natural science fund project:Study on the Mechanism of Danshen Zexie Decoction in Activating Nuclear Factor Erythroid 2-related Factor 2 Signaling Pathway to Trigger 0mi/Htr A2,Restoring Autophagic Flux and Enhancing Metabolism-Related Fatty Liver Disease(No.H2023423064)Hebei graduate student innovation ability funding training project:to Investigate the Protective Effects and Underlying Mechanisms of Zexie Decoction on Lipotoxic Cardiomyopathy,with A Focus on the PGC-1a Signaling Pathway(No.CXZZBS2022096)。
文摘OBJECTIVE:To investigate the mechanism of Dan Ze mixture(丹泽合剂,DZM)in the treatment of lipotoxic cardiomyopathy.METHODS:Ultra-performance liquid chromatography tandem mass spectrometry was employed to characterize the serum migration constituents of DZM.A lipotoxic cardiomyopathy rat model was established through high-fat diet and intervened by different doses of DZM.The cardiac function was assessed using echocardiography,and hematoxylin and eosin,oil red O,and Masson staining were conducted to evaluate morphological changes,lipid accumulation,and fibrosis in myocardial tissue.Serum myocardial enzyme activity,lipid levels,and lipid content of myocardial tissue were measured,while fluorescent staining and colorimetry were used to assess oxidation levels in myocardial tissue.Mitochondrial membrane potential was detected by 5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanineiodide(JC-1).Transmission electron microscopy was employed to observe ultrastructure and mitochondrial structure changes in myocardial tissue.Fluorescence double staining and colocalization were utilized to observe the binding of autophagosomes and mitochondria,while immunohistochemical staining was used to detect the expression of mitophagy-related proteins.Terminal deoxynucleoitidyl transferase mediated nick end labeling staining was employed for the identification of apoptosis in myocardial tissue,while quantitative real-time reverse transcriptase polymerase chain reaction(q RT-PCR)and Western blot were utilized for the detection of apoptosis,B-cell lymphoma-2 adenovirus E1B 19 k Da-interacting protein 3(BNIP3)/mitophagy signaling pathway-related genes and proteins.In palmitic acid-induced Rat H9C2 cardiomyocytes(H9c2)cells,various cellular parameters including cell viability,lactate dehydrogenase release,apoptosis rate,oxidative stress level,mitochondrial structure and function,and mitophagy level were assessed after the treatment of DZM drug-containing serum for a duration of 24 h.The cellular expressions of BNIP3/mitophagy signaling pathway relevant genes and proteins were further evaluated using q RT-PCR and Western blot techniques.RESULTS:A total of 295 prototypes(e.g.,phenolic acids,quinones,terpenoids)were identified in serum of rats after oral administration of DZM.In vivo,DZM therapy has been shown to effectively enhance cardiac function,mitigate high-fat diet-induced myocardial structural damage and lipid accumulation.Furthermore,DZM has demonstrated the ability to reduce lipid levels,attenuate cell apoptosis,combat oxidative stress,enhance mitochondrial structure and function,and activate the BNIP3/mitophagy signaling pathway.Furthermore,the silencing of BNIP3 has been shown to exacerbate palmitic acid-induced damages in H9c2 cells,while inhibiting the BNIP3/mitophagy signaling pathway can mitigate the inhibitory effects of DZM on palmitic acidinduced apoptosis,lipid deposition and oxidative stress.CONCLUSION:This study presents preliminary evidence for the therapeutic efficacy of DZM on lipotoxic cardiomyopathy through the activating BNIP3/mitophagy signaling pathway.
基金Supported by Natural Science Foundation of Guangdong Province,No.2022A1515012346.
文摘BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.