期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DS-LOF与GA-XGBoost的路域环境感知数据智能检测与修复
被引量:
6
1
作者
孙朝云
裴莉莉
+2 位作者
徐磊
李伟
杜耀辉
《中国公路学报》
EI
CAS
CSCD
北大核心
2023年第4期15-26,共12页
针对目前路域环境感知系统易受路面结构和气候等众多因素影响从而造成感知数据出现异常的问题,对路域环境感知数据异常智能检测与修复问题展开研究,提出一种基于DS-LOF(Difference&Summation-Local Outlier Factor)与GA-XGBoost(Gen...
针对目前路域环境感知系统易受路面结构和气候等众多因素影响从而造成感知数据出现异常的问题,对路域环境感知数据异常智能检测与修复问题展开研究,提出一种基于DS-LOF(Difference&Summation-Local Outlier Factor)与GA-XGBoost(Genetic Algorithm-eXtreme Gradient Boosting)的路域环境异常感知数据智能检测与修复方法。以沥青路面温湿度感知数据为实例,首先通过对感知数据进行一阶差分与线性求和计算,构建原始感知数据DS(Difference&Summation)特征向量;然后,基于DS-LOF算法对感知数据进行异常值检测,并与K-means聚类和单类支持向量机算法进行对比分析;其次,以原始感知数据集为基础,并结合异常检测结果,构建路域环境感知数据异常修复数据集;最后基于遗传算法优化XGBoost模型进行数据修复。试验结果表明:GA-XGBoost模型相比于XGBoost模型以及其他机器学习修复模型,其路域环境感知数据修复平均误差最低(M_(AE)=1.2537,R_(MSE)=1.8967),且修复精度最高(R^(2)=0.9448)。对修复前后数据进行稳定性评价,结果表明修复后数据的稳定性评价指标更优,说明修复后数据异常值更少,分布更加稳定。同时设置不同异常占比数据集并对其进行稳定性评价,发现数据集的异常占比越高,数据修复的效果也越明显。提出的路域环境感知数据智能检测与修复模型能够实现对异常数据的智能检测与修复,且能够提升路域环境感知数据质量和稳定性,可为路面性能影响因素分析与衰变规律研究提供可靠的数据支持。
展开更多
关键词
道路工程
路域环境感知数据
异常检测与修复
ds-lof
算法
GA-XGBoost模型
原文传递
题名
基于DS-LOF与GA-XGBoost的路域环境感知数据智能检测与修复
被引量:
6
1
作者
孙朝云
裴莉莉
徐磊
李伟
杜耀辉
机构
长安大学信息工程学院
百度在线网络技术(北京)有限公司
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
2023年第4期15-26,共12页
基金
国家重点研发计划项目(2018YFB1600202)
长安大学博士研究生创新能力培养项目(300203211241)
国家自然科学基金项目(52178407)
文摘
针对目前路域环境感知系统易受路面结构和气候等众多因素影响从而造成感知数据出现异常的问题,对路域环境感知数据异常智能检测与修复问题展开研究,提出一种基于DS-LOF(Difference&Summation-Local Outlier Factor)与GA-XGBoost(Genetic Algorithm-eXtreme Gradient Boosting)的路域环境异常感知数据智能检测与修复方法。以沥青路面温湿度感知数据为实例,首先通过对感知数据进行一阶差分与线性求和计算,构建原始感知数据DS(Difference&Summation)特征向量;然后,基于DS-LOF算法对感知数据进行异常值检测,并与K-means聚类和单类支持向量机算法进行对比分析;其次,以原始感知数据集为基础,并结合异常检测结果,构建路域环境感知数据异常修复数据集;最后基于遗传算法优化XGBoost模型进行数据修复。试验结果表明:GA-XGBoost模型相比于XGBoost模型以及其他机器学习修复模型,其路域环境感知数据修复平均误差最低(M_(AE)=1.2537,R_(MSE)=1.8967),且修复精度最高(R^(2)=0.9448)。对修复前后数据进行稳定性评价,结果表明修复后数据的稳定性评价指标更优,说明修复后数据异常值更少,分布更加稳定。同时设置不同异常占比数据集并对其进行稳定性评价,发现数据集的异常占比越高,数据修复的效果也越明显。提出的路域环境感知数据智能检测与修复模型能够实现对异常数据的智能检测与修复,且能够提升路域环境感知数据质量和稳定性,可为路面性能影响因素分析与衰变规律研究提供可靠的数据支持。
关键词
道路工程
路域环境感知数据
异常检测与修复
ds-lof
算法
GA-XGBoost模型
Keywords
road engineering
road environment sensing data
anomaly detection and repair
ds-lof
GA-XGBoost
分类号
U414 [交通运输工程—道路与铁道工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于DS-LOF与GA-XGBoost的路域环境感知数据智能检测与修复
孙朝云
裴莉莉
徐磊
李伟
杜耀辉
《中国公路学报》
EI
CAS
CSCD
北大核心
2023
6
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部