期刊文献+
共找到1,312篇文章
< 1 2 66 >
每页显示 20 50 100
带有Dropout结构的贝叶斯近似宽度学习系统
1
作者 陈滔 王立杰 +2 位作者 刘洋 徐丽莉 于海生 《控制理论与应用》 北大核心 2025年第8期1632-1640,共9页
宽度学习系统(BLS)及其改进算法均普遍存在一个问题,即随着实际场景中数据复杂性的逐步增强,网络结构变得极其复杂,进一步导致计算资源的消耗也大幅度增加.针对此问题,本文提出了一种带有Dropout算法的贝叶斯近似宽度学习系统(Dropout-B... 宽度学习系统(BLS)及其改进算法均普遍存在一个问题,即随着实际场景中数据复杂性的逐步增强,网络结构变得极其复杂,进一步导致计算资源的消耗也大幅度增加.针对此问题,本文提出了一种带有Dropout算法的贝叶斯近似宽度学习系统(Dropout-BABLS).首先,利用Dropout算法对宽度学习系统的隐藏层节点随机进行丢弃.其次,通过结合高斯回归过程和贝叶斯理论近似Dropout对输出结果的损失函数以确定Dropout-BABLS的目标函数,进一步采用增广拉格朗日乘子法对目标函数的输出权重进行优化求解.最后,通过UCI机器学习知识库的10组回归数据集和自建的6组时间序列数据集对算法进行分析评估.结果表明,本文所提出的Dropout-BABLS算法能保证相应的输出精度,并减少25%~50%的训练时间. 展开更多
关键词 宽度学习系统 dropout 高斯过程 贝叶斯近似 拉格朗日乘子 回归分析
在线阅读 下载PDF
基于Dropout策略的卷积神经网络的数字识别效果研究
2
作者 张宗宇 徐军 陈士超 《兰州文理学院学报(自然科学版)》 2025年第3期43-47,52,共6页
针对卷积神经网络对手写体中文数字识别精度较低的问题,使用Chinese MNIST数据集对优化后的卷积神经网络模型进行训练与测试,对比了不同激活函数在层数不同的卷积神经网络上的测试精度和训练时间,并采用Dropout策略优化模型.结果表明,t... 针对卷积神经网络对手写体中文数字识别精度较低的问题,使用Chinese MNIST数据集对优化后的卷积神经网络模型进行训练与测试,对比了不同激活函数在层数不同的卷积神经网络上的测试精度和训练时间,并采用Dropout策略优化模型.结果表明,tanh激活函数结合分类函数Softmax的分类效果较优,识别精度达到99.30%;ReLU函数的收敛速度约为tanh函数的3倍,在兼顾模型识别精度与训练时间方面,ReLU函数要比tanh函数做得更好.使用0.2的Dropout抑制过拟合后,ReLU的最优模型识别精度达到99.53%. 展开更多
关键词 卷积神经网络 数字识别 dropout策略 识别效果
在线阅读 下载PDF
DB-FL: DAG blockchain-enabled generalized federated dropout learning
3
作者 Sa Xiao Xiaoge Huang +2 位作者 Xuesong Deng Bin Cao Qianbin Chen 《Digital Communications and Networks》 2025年第3期886-897,共12页
To protect user privacy and data security,the integration of Federated Learning(FL)and blockchain has become an emerging research hotspot.However,the limited throughput and high communication complexity of traditional... To protect user privacy and data security,the integration of Federated Learning(FL)and blockchain has become an emerging research hotspot.However,the limited throughput and high communication complexity of traditional blockchains limit their application in large-scale FL tasks,and the synchronous traditional FL will also reduce the training efficiency.To address these issues,in this paper,we propose a Directed Acyclic Graph(DAG)blockchain-enabled generalized Federated Dropout(FD)learning strategy,which could improve the efficiency of FL while ensuring the model generalization.Specifically,the DAG maintained by multiple edge servers will guarantee the security and traceability of the data,and the Reputation-based Tips Selection Algorithm(RTSA)is proposed to reduce the blockchain consensus delay.Second,the semi-asynchronous training among Intelligent Devices(IDs)is adopted to improve the training efficiency,and a reputation-based FD technology is proposed to prevent overfitting of the model.In addition,a Hybrid Optimal Resource Allocation(HORA)algorithm is introduced to minimize the network delay.Finally,simulation results demonstrate the effectiveness and superiority of the proposed algorithms. 展开更多
关键词 Federated learning Blockchain Directed acyclic graph Federated dropout Resource allocation
在线阅读 下载PDF
A model for predicting dropout of higher education students
4
作者 Anaíle Mendes Rabelo Luis Enrique Zárate 《Data Science and Management》 2025年第1期72-85,共14页
Higher education institutions are becoming increasingly concerned with the retention of their students.This work is motivated by the interest in predicting and reducing student dropout,and consequently in reducing the... Higher education institutions are becoming increasingly concerned with the retention of their students.This work is motivated by the interest in predicting and reducing student dropout,and consequently in reducing the financial losses of said institutions.Based on the characterization of the dropout problem and the application of a knowledge discovery process,an ensemble model is proposed to improve dropout prediction.The ensemble model combines the results of three models:logistic regression,neural networks,and decision tree.As a result,the model can correctly classify 89%of the students as enrolled or dropped and accurately identify 98.1%of dropouts.When compared with the Random Forest ensemble method,the proposed model demonstrates desirable characteristics to assist management in proposing actions to retain students. 展开更多
关键词 Educational data mining dropout prediction Regression logistic Decision tree Neural networks
在线阅读 下载PDF
基于Dropout神经网络的电网碳排放因子预测方法
5
作者 伍飞 宋竹萌 +1 位作者 张杨光 王宝 《计算机仿真》 2025年第9期161-164,220,共5页
电网节点的碳排放量会随时间、负载、天气等因素波动,且来源广泛,因数据整合和处理过程复杂,极易导致数据存在稀疏性,继而导致模型在训练过程中学习到不稳定的特征,影响预测结果的准确性。为此,提出基于Dropout神经网络的电网碳排放因... 电网节点的碳排放量会随时间、负载、天气等因素波动,且来源广泛,因数据整合和处理过程复杂,极易导致数据存在稀疏性,继而导致模型在训练过程中学习到不稳定的特征,影响预测结果的准确性。为此,提出基于Dropout神经网络的电网碳排放因子预测方法。通过构建电网拓扑图与节点碳势模型,结合电力潮流守恒定律,推导出各节点碳排放因子的计算公式;通过Dropout技术在训练过程中随机丢弃部分神经元的方式,这种随机性使模型在训练过程中必须考虑更多的特征组合,从而减少对数据稀疏特征的依赖,提高神经网络模型的泛化能力。利用优化后的神经网络,依据实时负载数据预测出电网节点的碳排放因子。通过实验可知,上述方法不仅可以提高电网碳排放因子预测的准确性,还增强了神经网络模型的泛化能力。 展开更多
关键词 神经网络 碳排放因子 预测模型 潮流追踪 电网负荷 数据稀疏性
在线阅读 下载PDF
基于SEAIQR模型与Dropout-LSTM模型的西安市COVID-19疫情趋势预测 被引量:1
6
作者 马艺菲 许书君 +5 位作者 秦瑶 李建涛 雷立健 贺鹭 余红梅 解军 《中国卫生统计》 CSCD 北大核心 2024年第2期207-212,共6页
目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清... 目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清零”策略防控效果提供科学依据。方法考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型。考虑到COVID-19疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型。选用2021年12月9日-2022年1月31日西安市新增确诊病例数据进行拟合,用2022年2月1日-2022年2月7日数据评估预测效果,计算有效再生数(R_(t))并评价不同参数对疫情发展的影响。结果SEAIQR模型预测的新增确诊病例拐点预计在2021年12月26日出现,约为176例,疫情将于2022年1月24日实现“动态清零”,模型R^(2)=0.849。Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R^(2)=0.937。Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想。疫情暴发初期,R 0为5.63,自实施全面管控后,R_(t)呈逐渐下降趋势,直到2021年12月27日降至1.0以下。随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低。结论建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19疫情“动态清零”防控决策提供借鉴。 展开更多
关键词 新型冠状病毒肺炎 SEAIQR模型 dropout-LSTM模型 动态清零 预测 对比
暂未订购
基于添加Dropout层的CNN-LSTM网络短期负荷预测 被引量:1
7
作者 王振勋 王大虎 《科技与创新》 2024年第6期28-30,共3页
精准的短期负荷预测能帮助电力部门制订合理的生产调度计划,达到节省能源消耗的目的。为提升短期负荷预测的准确性,提出一种添加Dropout层的CNN-LSTM网络短期负荷预测方法。首先,根据电力负荷预测流程对预测的影响因素如气象、日期类型... 精准的短期负荷预测能帮助电力部门制订合理的生产调度计划,达到节省能源消耗的目的。为提升短期负荷预测的准确性,提出一种添加Dropout层的CNN-LSTM网络短期负荷预测方法。首先,根据电力负荷预测流程对预测的影响因素如气象、日期类型等进行相关性验证后构建输入特征向量;其次,使用一维卷积网络对输入的特征向量进行卷积、池化处理,并在LSTM网络全连接层添加Dropout层进行短期负荷预测仿真实验;最后,使用某电网历史数据进行测试。结果表明,相比于单独的LSTM网络,所建模型对短期负荷的预测效果更好。 展开更多
关键词 dropout技术 长短期记忆网络 卷积网络 负荷预测
在线阅读 下载PDF
运用Dropout-GRU模型的短期负荷预测
8
作者 闫方 吕梦娜 +2 位作者 杨文艺 张顺利 王丹阳 《电子设计工程》 2024年第24期124-128,共5页
为提高短期电力负荷预测精度,提出采用Dropout-GRU模型的短期负荷预测方法。该方法基于Python爬虫获取对负荷预测有影响的多种气象因素,降低人为采集数据时由于主观因素导致数据错误的可能性;构建多层GRU网络以充分挖掘波动较大的负荷... 为提高短期电力负荷预测精度,提出采用Dropout-GRU模型的短期负荷预测方法。该方法基于Python爬虫获取对负荷预测有影响的多种气象因素,降低人为采集数据时由于主观因素导致数据错误的可能性;构建多层GRU网络以充分挖掘波动较大的负荷数据之间的非线性关系;在GRU网络的非循环部分加入Dropout技术,使神经元按照一定概率失活,有效解决了多层GRU网络易产生的过拟合问题,从而提高短期负荷预测精度。以某县负荷数据为例进行实验可知,该文方法的MAPE、RMSE和MAE相比单纯GRU网络分别降低58.90%、61.54%和58.17%,说明该文预测方法效果更佳。 展开更多
关键词 短期负荷预测 dropout技术 GRU网络 气象因素 过拟合
在线阅读 下载PDF
基于Bi-LSTM-Dropout的蓄电池剩余使用寿命预测方法 被引量:5
9
作者 黄晓智 张华明 +1 位作者 黄艺航 许志杰 《自动化与信息工程》 2024年第1期42-46,60,共6页
蓄电池剩余使用寿命预测对能源的安全性和可持续发展至关重要。该文提出一种蓄电池剩余使用寿命的预测方法,利用蓄电池的历史运行数据和充放电周期,构建Bi-LSTM-Dropout网络模型。利用Bi-LSTM提取时间序列中蓄电池长期依赖的特征,采用Dr... 蓄电池剩余使用寿命预测对能源的安全性和可持续发展至关重要。该文提出一种蓄电池剩余使用寿命的预测方法,利用蓄电池的历史运行数据和充放电周期,构建Bi-LSTM-Dropout网络模型。利用Bi-LSTM提取时间序列中蓄电池长期依赖的特征,采用Dropout优化算法降低Bi-LSTM网络模型的复杂度,提高模型的泛化能力。实验结果表明,该方法在测试集上的准确率达96.2%,实现了蓄电池剩余使用寿命的精确预测。 展开更多
关键词 蓄电池 剩余使用寿命预测 Bi-LSTM dropout优化算法
在线阅读 下载PDF
基于Dropout的CNN水果品质分级模型研究 被引量:1
10
作者 李仁惠 张根茂 +3 位作者 李丹霞 齐永兰 朱雪珂 王珊 《南方农机》 2024年第16期130-132,172,共4页
【目的】提高水果分级效率。【方法】提出一种用于水果品质分级的深度学习检测识别方法,该方法在传统的CNN(卷积神经网络)模型基础上进行了改进,可以快速准确检测识别水果并进行品质分级。以苹果为例,通过对原始数据集进行数据增强,来... 【目的】提高水果分级效率。【方法】提出一种用于水果品质分级的深度学习检测识别方法,该方法在传统的CNN(卷积神经网络)模型基础上进行了改进,可以快速准确检测识别水果并进行品质分级。以苹果为例,通过对原始数据集进行数据增强,来增加样本数量和确保样本多样化。此外,为防止训练模型时出现过拟合现象,引入Dropout层来提升模型的泛化能力,同时将本研究结果与相关研究结果做对比实验分析。【结果与结论】基于Dropout的CNN水果品质分级模型对苹果品质分级精确度可达98.52%,该模型能更加准确地进行检测识别,为农业智能水果品质分级装备的研发提供了研究基础。 展开更多
关键词 水果 品质分级 CNN dropout
在线阅读 下载PDF
One memristor–one electrolyte-gated transistor-based high energy-efficient dropout neuronal units
11
作者 李亚霖 时凯璐 +4 位作者 朱一新 方晓 崔航源 万青 万昌锦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期569-573,共5页
Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. Th... Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem. 展开更多
关键词 dropout neuronal unit synaptic transistors MEMRISTOR artificial neural network
原文传递
Regularized Inverse Covariance Estimation for Longitudinal Data with Informative Dropout
12
作者 YANG Shuning ZHENG Zhi ZHANG Weiping 《应用概率统计》 CSCD 北大核心 2024年第6期1016-1039,共24页
This paper proposes a novel method for estimating the sparse inverse covariance matrixfor longitudinal data with informative dropouts. Based on the modified Cholesky decomposition,the sparse inverse covariance matrix ... This paper proposes a novel method for estimating the sparse inverse covariance matrixfor longitudinal data with informative dropouts. Based on the modified Cholesky decomposition,the sparse inverse covariance matrix is modelled by the autoregressive regression model,which guarantees the positive definiteness of the covariance matrix. To account for the informativedropouts, we then propose a penalized estimating equation method using the inverse probabilityweighting approach. The informative dropout propensity parameters are estimated by the generalizedmethod of moments. The asymptotic properties are investigated for the resulting estimators.Finally, we illustrate the effectiveness and feasibility of the proposed method through Monte Carlosimulations and a practical application. 展开更多
关键词 penalized estimating function modified Cholesky decomposition dropout inverse probability weighting
在线阅读 下载PDF
Flipover outperforms dropout in deep learning
13
作者 Yuxuan Liang Chuang Niu +1 位作者 Pingkun Yan Ge Wang 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期364-372,共9页
Flipover,an enhanced dropout technique,is introduced to improve the robustness of artificial neural networks.In contrast to dropout,which involves randomly removing certain neurons and their connections,flipover rando... Flipover,an enhanced dropout technique,is introduced to improve the robustness of artificial neural networks.In contrast to dropout,which involves randomly removing certain neurons and their connections,flipover randomly selects neurons and reverts their outputs using a negative multiplier during training.This approach offers stronger regularization than conventional dropout,refining model performance by(1)mitigating overfitting,matching or even exceeding the efficacy of dropout;(2)amplifying robustness to noise;and(3)enhancing resilience against adversarial attacks.Extensive experiments across various neural networks affirm the effectiveness of flipover in deep learning. 展开更多
关键词 Model robustness REGULARIZATION Flipover dropout Adversarial defense
在线阅读 下载PDF
基于Dropout正则化的汉语框架语义角色识别 被引量:17
14
作者 王瑞波 李济洪 +1 位作者 李国臣 杨耀文 《中文信息学报》 CSCD 北大核心 2017年第1期147-154,共8页
汉语框架语义角色识别是汉语框架语义分析的重要任务之一。该文基于汉语词语、词性等特征的分布式表示,使用一种多特征融合的神经网络结构来构建汉语框架语义角色识别模型。鉴于可用的训练语料规模有限,该文采用了Dropout正则化技术来... 汉语框架语义角色识别是汉语框架语义分析的重要任务之一。该文基于汉语词语、词性等特征的分布式表示,使用一种多特征融合的神经网络结构来构建汉语框架语义角色识别模型。鉴于可用的训练语料规模有限,该文采用了Dropout正则化技术来改进神经网络的训练过程。实验结果表明,Dropout正则化的加入有效地缓解了模型的过拟合现象,使得模型的F值有了近7%的提高。该文进一步优化了学习率以及分布式表示的初始值,最终的汉语框架语义角色识别的F值达到70.54%,较原有的最优结果提升2%左右。 展开更多
关键词 汉语框架网络 语义角色识别 dropout正则化
在线阅读 下载PDF
运用Dropout-LSTM模型的新冠肺炎趋势预测 被引量:17
15
作者 王瑞 闫方 +1 位作者 逯静 杨文艺 《电子科技大学学报》 EI CAS CSCD 北大核心 2021年第3期414-421,共8页
为提高新冠肺炎(COVID-19)趋势预测精度,该文提出一种运用Dropout技术的长短期记忆(LSTM)神经网络预测新冠肺炎发展趋势的方法。该方法基于Python语言使用网络爬虫技术获取完整的国内新冠肺炎历史数据,提高数据采集效率的同时减少了主... 为提高新冠肺炎(COVID-19)趋势预测精度,该文提出一种运用Dropout技术的长短期记忆(LSTM)神经网络预测新冠肺炎发展趋势的方法。该方法基于Python语言使用网络爬虫技术获取完整的国内新冠肺炎历史数据,提高数据采集效率的同时减少了主观原因导致的数据错误;因为新冠肺炎历史数据为时序性数据,为避免人为添加时间特征及充分挖掘较少时序数据之间的非线性关系,该文构建了层数更多的LSTM神经网络预测模型。随后在隐藏层中的非循环部分采用Dropout技术,对神经元进行随机概率失活,有效解决了深度学习的过拟合问题。最后用国内累计确诊、现有确诊和累计治愈人数对该方法进行验证,实验证明该方法可较精准预测新冠肺炎传播趋势。 展开更多
关键词 新冠肺炎 dropout技术 长短期记忆神经网络 网络爬虫
在线阅读 下载PDF
连续语音识别中基于Dropout修正线性深度置信网络的声学模型 被引量:4
16
作者 陈雷 杨俊安 +1 位作者 王龙 李晋徽 《声学技术》 CSCD 北大核心 2016年第2期146-154,共9页
大词汇量连续语音识别系统中,为了增强现有声学模型的表征能力、防止模型过拟合,提出一种基于遗失策略(Dropout)修正线性深度置信网络的声学模型构建方法。该方法使用修正线性函数代替传统Logistic函数进行深度置信网络训练,修正线性函... 大词汇量连续语音识别系统中,为了增强现有声学模型的表征能力、防止模型过拟合,提出一种基于遗失策略(Dropout)修正线性深度置信网络的声学模型构建方法。该方法使用修正线性函数代替传统Logistic函数进行深度置信网络训练,修正线性函数更接近生物神经网络的工作方式,增强了模型的表征能力;同时引入Dropout策略对修正线性深度置信网络进行调整,避免节点之间的协同作用,防止网络出现过拟合。文章利用公开语音数据集进行了实验,实验结果证明了所提出的声学模型构建方法相对于传统方法的优越性。 展开更多
关键词 连续语音识别 深度置信网络 修正线性 过拟合 dropout
在线阅读 下载PDF
基于Dropout卷积神经网络的行为识别 被引量:8
17
作者 范晓杰 宣士斌 唐凤 《广西民族大学学报(自然科学版)》 CAS 2017年第1期76-82,共7页
近年来,卷积神经网络(CNN)已经成为很多科学领域的研究热点之一.卷积神经网络作为一种深度模型可以直接作用于原始输入,不需要手动设计特征描述子.与传统神经网络相比识别效果有很大的提高.它已经建立了一类强大的模型来处理图像识别,... 近年来,卷积神经网络(CNN)已经成为很多科学领域的研究热点之一.卷积神经网络作为一种深度模型可以直接作用于原始输入,不需要手动设计特征描述子.与传统神经网络相比识别效果有很大的提高.它已经建立了一类强大的模型来处理图像识别,并对其扩展到三维卷积神经网络(3D CNN)来处理视频识别问题.在此基础上,笔者对三维卷积神经网络做了如下改进:用Gabor小波核来初始化卷积操作,以达到模拟人类视觉系统对视觉刺激的响应;在网络训练的过程中加入Dropout技术,随机选择删除部分神经元,以此来提高网络的泛化能力,有效防止过拟合.提出的方法在KTH和UCF-YouTube数据集上进行验证,取得了很好地识别效果. 展开更多
关键词 卷积神经网络 Gabor小波核 dropout技术
在线阅读 下载PDF
多尺度融合dropout优化算法 被引量:4
18
作者 钟忺 陈恩晓 +1 位作者 罗瑞奇 卢炎生 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第9期35-39,共5页
为了改善传统标准dropout无法根据特定数据集确定合适尺度的不足,提出了多尺度融合dropout(MSF dropout)方法.利用验证数据集对多个不同尺度的网络模型进行训练,通过学习得到符合该数据集特征的最佳尺度组合,让MSFdropout具备自适应... 为了改善传统标准dropout无法根据特定数据集确定合适尺度的不足,提出了多尺度融合dropout(MSF dropout)方法.利用验证数据集对多个不同尺度的网络模型进行训练,通过学习得到符合该数据集特征的最佳尺度组合,让MSFdropout具备自适应数据集的能力,从而使网络能够使用最佳尺度来进行高精确度的预测.首先训练若干组不同尺度的网络模型,使用遗传算法求出各网络模型的最优尺度;然后通过最优尺度对对应的网络参数进行缩小得到预测子模型;最后以一定的权重将这些子模型融合成为最终的预测模型.使用MSFdropout在标准数据集MNIST和CIFAR-10中进行实验,实验表明:当选择了合适的尺度数量和尺度梯度后,预测精度获得了明显的提升,同时很好地控制了计算时间,验证了多尺度融合方法的有效性. 展开更多
关键词 神经网络 正则化 多尺度融合 遗传算法 dropout 深度学习
原文传递
基于ANN-dropout的配电网可靠性预测方法 被引量:13
19
作者 邢晓敏 何铁新 +2 位作者 郑雪瑞 冯帆 孙成 《南方电网技术》 CSCD 北大核心 2019年第2期66-73,共8页
随着配电网的高速发展,大量自动化设备不断接入使用给配电网的可靠运行带来了巨大的挑战。本文针对配电网动态规律和可靠性指标特征,提出了两种机器学习算法来预测配电网可靠性。通过对配电网数据进行数据变换,让预测区间从[0,1]变成[0,... 随着配电网的高速发展,大量自动化设备不断接入使用给配电网的可靠运行带来了巨大的挑战。本文针对配电网动态规律和可靠性指标特征,提出了两种机器学习算法来预测配电网可靠性。通过对配电网数据进行数据变换,让预测区间从[0,1]变成[0,+∞),对变换后的数据进行归一化再输入预测模型。配电网实例验证结果表明,数据变换后机器的学习预测效果提升明显,经过dropout技术优化的人工神经网络(artificial neural network,ANN)具有最佳的预测性能。本文提出的预测模型能准确地预测配电网的可靠性,为配电网的建设投资和优化运行提供有效的指导。 展开更多
关键词 配电网 可靠性预测 人工神经网络 dropout技术 支持向量回归
在线阅读 下载PDF
一种结合Dropblock和Dropout的正则化策略 被引量:8
20
作者 胡辉 司凤洋 +1 位作者 曾琛 舒文璐 《河南师范大学学报(自然科学版)》 CAS 北大核心 2019年第6期51-56,共6页
为了能够全面且高效加快卷积分类网络的收敛速度和提升稳定性,提出了一种新的正则化策略,将Dropblock算法和Dropout算法相结合,从而实现对整个卷积分类网络的浅层、中层和深层网络进行正则化.其中,Dropblock通过隐藏部分特征图实现卷积... 为了能够全面且高效加快卷积分类网络的收敛速度和提升稳定性,提出了一种新的正则化策略,将Dropblock算法和Dropout算法相结合,从而实现对整个卷积分类网络的浅层、中层和深层网络进行正则化.其中,Dropblock通过隐藏部分特征图实现卷积层正则化,Dropout通过隐藏部分权重参数实现全连接层正则化,从而实现对整个卷积分类网络进行全面正则化.通过Kaggle猫狗分类大赛提供的数据集进行训练和测试实验表明,提出的新的正则化策略可有效加快分类网络的收敛速度和提升稳定性,此外,能有效提高深度卷积分类网络的分类准确率. 展开更多
关键词 正则化 dropout Dropblock 收敛速度 稳定性
在线阅读 下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部