This study investigates the dromion structure within the context of(2+1)-dimensional modulated positron-acoustic waves in a magnetoplasma consisting of inertial cold positrons and inertialess nonthermal hot electrons ...This study investigates the dromion structure within the context of(2+1)-dimensional modulated positron-acoustic waves in a magnetoplasma consisting of inertial cold positrons and inertialess nonthermal hot electrons and positrons as well as stationary positive ions.The reductive perturbation approach reduces the fluid governing equations to the plasma model to a Davey–Stewartson system.This study provides a detailed analysis of the influence of many related plasma parameters,including the density ratio of hot and cold positrons,the external magnetic field strength,the nonthermal parameter and the density ratio of electrons and cold positrons,on the growing rate of instability.Using the Hirota Bilinear method,it is found that the system supports some exact solutions,such as one-and two-dromion solutions.The change of plasma parameters significantly enhances the characteristics of dromion solutions.The elastic and inelastic collisions between two dromions are discussed at different times.The relevance of this study can help us to understand the various types of collision between energetic particles in confined plasma during the production of energy by thermonuclear fusion.展开更多
We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this...We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this system are released.展开更多
A modified mapping method is used to obtain variable separation solution with two arbitrary functions of the(2+1)-dimensional Broer-Kaup-Kupershmidt equation.Based on the variable separation solution and by selecting ...A modified mapping method is used to obtain variable separation solution with two arbitrary functions of the(2+1)-dimensional Broer-Kaup-Kupershmidt equation.Based on the variable separation solution and by selecting appropriate functions,we discuss the completely elastic head-on collision between two dromion-lattices,non-completely elastic "chase and collision" between two multi-dromion-pairs and completely non-elastic interaction phenomenon between anti-dromion and dromion-pair.展开更多
We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as ...We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as the solitons do during a completely elastic interaction, in the and even models, and dromion solutions (exponentially decaying solutions in all direction) in many and models. In this paper, symmetry reductions in are considered for the break soliton-type equation with fully nonlinear dispersion (called equation) , which is a generalized model of break soliton equation , by using the extended direct reduction method. As a result, six types of symmetry reductions are obtained. Starting from the reduction equations and some simple transformations, we obtain the solitary wave solutions of equations, compacton solutions of equations and the compacton-like solution of the potential form (called ) . In addition, we show that the variable admits dromion solutions rather than the field itself in equation.展开更多
By means of an extended mapping approach and a linear variable separation approach,a new family ofexact solutions of the general (2+1)-dimensional Korteweg de Vries system (GKdV) are derived.Based on the derivedsolita...By means of an extended mapping approach and a linear variable separation approach,a new family ofexact solutions of the general (2+1)-dimensional Korteweg de Vries system (GKdV) are derived.Based on the derivedsolitary wave excitation,we obtain some special peakon excitations and fractal dromions in this short note.展开更多
Starting from the known variable separation excitations of a(2 + 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,rich coherent structures can be derived.The interactions among different types of solitary ...Starting from the known variable separation excitations of a(2 + 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,rich coherent structures can be derived.The interactions among different types of solitary waves like peakons,dromions,and compactons are investigated and some novel features or interesting behaviors are revealed.The results show that the interactions for peakon-dromion,compacton-dromion,and peakon-compacton may be completely nonelastic or completely elastic.展开更多
Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solu...Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solutions, periodic-soliton solutions, and Weierstrass function solutions. Based on a periodic-soliton solution, a new type of localized excitation, i.e., the four-dromion soliton, is constructed and some evolutional properties of this localized structure are briefly discussed.展开更多
By improved projective equation approach and a linear variable separation approach, a new family of exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli (BLP) system is derived. Based on the derived sol...By improved projective equation approach and a linear variable separation approach, a new family of exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli (BLP) system is derived. Based on the derived solitary wave solution, some dromion and solitoff excitations and chaotic behaviours are investigated.展开更多
Starting from the variable separation solution obtained by using the extended homogenous balance method,a new class of combined structures, such as multi-peakon and multi-dromion solution, multi-compacton and multidro...Starting from the variable separation solution obtained by using the extended homogenous balance method,a new class of combined structures, such as multi-peakon and multi-dromion solution, multi-compacton and multidromion solution, multi-peakon and multi-compacton solution, for the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are found by selecting appropriate functions. These new structures exhibit novel interaction features. Their interaction behavior is very similar to the completely nonelastic collisions between two classical particles.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research and Libraries in Princess Nourah bint Abdulrahman University for funding this research work through the Research Group project under Grant No.(RG-1445-0005).
文摘This study investigates the dromion structure within the context of(2+1)-dimensional modulated positron-acoustic waves in a magnetoplasma consisting of inertial cold positrons and inertialess nonthermal hot electrons and positrons as well as stationary positive ions.The reductive perturbation approach reduces the fluid governing equations to the plasma model to a Davey–Stewartson system.This study provides a detailed analysis of the influence of many related plasma parameters,including the density ratio of hot and cold positrons,the external magnetic field strength,the nonthermal parameter and the density ratio of electrons and cold positrons,on the growing rate of instability.Using the Hirota Bilinear method,it is found that the system supports some exact solutions,such as one-and two-dromion solutions.The change of plasma parameters significantly enhances the characteristics of dromion solutions.The elastic and inelastic collisions between two dromions are discussed at different times.The relevance of this study can help us to understand the various types of collision between energetic particles in confined plasma during the production of energy by thermonuclear fusion.
文摘We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this system are released.
基金Supported by the National Natural Science Foundation of China under Grant No. 11005092the Program for Innovative Research Team of Young Teachers under Grant No. 2009RC01Undergraduate Innovative Base of Zhejiang Agriculture and Forestry University,the Zhejiang Province Undergraduate Scientific and Technological Innovation Project under Grant No. 2012R412018
文摘A modified mapping method is used to obtain variable separation solution with two arbitrary functions of the(2+1)-dimensional Broer-Kaup-Kupershmidt equation.Based on the variable separation solution and by selecting appropriate functions,we discuss the completely elastic head-on collision between two dromion-lattices,non-completely elastic "chase and collision" between two multi-dromion-pairs and completely non-elastic interaction phenomenon between anti-dromion and dromion-pair.
文摘We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as the solitons do during a completely elastic interaction, in the and even models, and dromion solutions (exponentially decaying solutions in all direction) in many and models. In this paper, symmetry reductions in are considered for the break soliton-type equation with fully nonlinear dispersion (called equation) , which is a generalized model of break soliton equation , by using the extended direct reduction method. As a result, six types of symmetry reductions are obtained. Starting from the reduction equations and some simple transformations, we obtain the solitary wave solutions of equations, compacton solutions of equations and the compacton-like solution of the potential form (called ) . In addition, we show that the variable admits dromion solutions rather than the field itself in equation.
基金The project supported by the Natural Science Foundation of Zhejiang Province under Grant No.Y604106the Natural Science Foundation of Zhejiang Lishui University under Grant No.KZ05010
文摘By means of an extended mapping approach and a linear variable separation approach,a new family ofexact solutions of the general (2+1)-dimensional Korteweg de Vries system (GKdV) are derived.Based on the derivedsolitary wave excitation,we obtain some special peakon excitations and fractal dromions in this short note.
文摘Starting from the known variable separation excitations of a(2 + 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,rich coherent structures can be derived.The interactions among different types of solitary waves like peakons,dromions,and compactons are investigated and some novel features or interesting behaviors are revealed.The results show that the interactions for peakon-dromion,compacton-dromion,and peakon-compacton may be completely nonelastic or completely elastic.
基金supported by National Natural Science Foundation of China under Grant No.10272071the Natural Science Foundation of Zhejiang Province under Grant No.Y606049
文摘Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solutions, periodic-soliton solutions, and Weierstrass function solutions. Based on a periodic-soliton solution, a new type of localized excitation, i.e., the four-dromion soliton, is constructed and some evolutional properties of this localized structure are briefly discussed.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Y6100257, Y6110140, and Y6090681)the Natural Science Foundation of Zhejiang Lishui University, China (Grant Nos. KZ09005 and KY08003)
文摘By improved projective equation approach and a linear variable separation approach, a new family of exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli (BLP) system is derived. Based on the derived solitary wave solution, some dromion and solitoff excitations and chaotic behaviours are investigated.
文摘Starting from the variable separation solution obtained by using the extended homogenous balance method,a new class of combined structures, such as multi-peakon and multi-dromion solution, multi-compacton and multidromion solution, multi-peakon and multi-compacton solution, for the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are found by selecting appropriate functions. These new structures exhibit novel interaction features. Their interaction behavior is very similar to the completely nonelastic collisions between two classical particles.