Stimulated Raman scattering(SRS)under a new ignition path that combines the advantages of direct-drive(DD)and indirect-drive(ID)schemes is investigated experimentally at the Shenguang-100 kJ facility.The results show ...Stimulated Raman scattering(SRS)under a new ignition path that combines the advantages of direct-drive(DD)and indirect-drive(ID)schemes is investigated experimentally at the Shenguang-100 kJ facility.The results show that collective SRS in the plasma produced by ablating a polyimide film is detected for the ID beams,but is suppressed by adding a toe before the main pulse of the ID beams.The toe also strongly influences SRS of both the ID and DD beams excited in the plasma generated in the hohlraum.When a toe is used,the SRS spectra of the DD beams show that SRS tends to be excited in lower plasma density,which will result in a lower risk of super-hot electrons.Measurements of hot electrons support this conclusion.This research will help us produce a better pulse design for this new ignition path.展开更多
Sine-wave drive and square-wave drive are two common motor control strategies.This study constructs a mathematical model capable of predicting the distribution of electromagnetic force waves in synchronous reluctance ...Sine-wave drive and square-wave drive are two common motor control strategies.This study constructs a mathematical model capable of predicting the distribution of electromagnetic force waves in synchronous reluctance motors(SynRMs)under these two drive methods,and comparatively analyzes the vibration phenomena induced by electromagnetic forces under different drive methods.It aims to provide an effective tool for predicting the distribution of electromagnetic force waves in SynRMs,while exploring the influence of drive modes on their vibration characteristics.The study focuses on a 4-pole,36-slot 5.5 kW SynRM.Based on the magnetomotive force(MMF)-permeance method,incorporating the special rotor structure and the characteristics of current harmonics under square-wave drive,an air-gap flux distribution function is established.Meanwhile,Maxwell’s stress tensor method is adopted to analyze how the air-gap flux density relates to electromagnetic excitation force waves.Subsequently,this analysis is applied to forecast the spatiotemporal distribution features of radial electromagnetic force waves.Finite element simulations are conducted to compute the modal and vibration responses of the SynRM,followed by a comparative analysis of the vibration characteristics under the two drive methods.Additionally,a 6-pole,36-slot SynRM is used for additional comparative verification.Ultimately,the effectiveness of the simulation results is verified through experiments.展开更多
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical...Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.展开更多
Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev...Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.展开更多
With the continuous escalation of modern war,soldiers need to transport more combat materials to the combat area.The limited load-bearing capacity of soldiers seriously restricts their carrying capacity and mobility.I...With the continuous escalation of modern war,soldiers need to transport more combat materials to the combat area.The limited load-bearing capacity of soldiers seriously restricts their carrying capacity and mobility.It is urgent to develop a power-assisted exoskeleton robot suitable for individual combat.In the past,most power-assisted exoskeleton robots were driven by motors.This driving method has an excellent power-assisted effect,but the endurance is often insufficient.In view of this shortcoming,this study designed an ankle exoskeleton robot based on an active-passive combined drive through simulation analysis of human motion.It used OpenSim software to simulate and verify that the addition of spring could achieve a good effect.At the same time,according to the gait characteristics of the human body,the gait planning of an exoskeleton robot was carried out.Afterwards,theoretical analysis explained that the cooperation among spring,motor and wearer could be realized in this gait.Finally,the assisting ability and driving coordination of the active-passive combination driven ankle exoskeleton robot were verified through experiments.展开更多
The worm wheel whose undercutting characteristic is researched is a member of offsetting normal arc-toothed cylindrical worm drive.The tooth profile of the worm in its offsetting normal section is a circular arc.The n...The worm wheel whose undercutting characteristic is researched is a member of offsetting normal arc-toothed cylindrical worm drive.The tooth profile of the worm in its offsetting normal section is a circular arc.The normal vector used to calculate the first-type limit function is determined in the natural frame without the aid of the curvature parameter of worm helicoid.The first-type limit line is ascertained via solving the nonlinear equations iteratively.It is discovered that one first-type limit line exists on the tooth surface of worm wheel by numerical simulation,and such a line is normally located out of the meshing zone.Only one intersection point exists between the first and second-types of limit lines,and this point is a lubrication weak point.The undercutting mechanism is essentially that a part of the meshing zone near the conjugated line of worm tooth crest will come into the undercutting area and will be cut off during machining the worm wheel.The machining simulation verifies the correctness of undercutting mechanism.Moreover,a convenient and practical characteristic quantity is proposed to judge whether the undercutting exists in the whole meshing zone via computing the first-type limit function values on the worm tooth crest.展开更多
The Hydro-Viscous Drive(HVD)speed regulating system finds extensive application in air transport transmission systems to regulate the stepless speed or conduct overload protection.However,its intrinsic hysteretic beha...The Hydro-Viscous Drive(HVD)speed regulating system finds extensive application in air transport transmission systems to regulate the stepless speed or conduct overload protection.However,its intrinsic hysteretic behaviors,such as the asymmetric hysteretic and dead zone,could introduce inaccuracy and delay in control applications,posing challenges to system regulation.This paper investigates a Nonlinear Hysteresis Compensation Control(NHCC)that consists of two parts to control the HVD output speed by operating the valve under different engine operating conditions.In the first part,the Inverse Hysteresis Compensator(IHC)based on major loop data is introduced for the asymmetric hysteresis characterization and compensation of the HVD speed control system of the power generation and distribution,which aims to reduce the hysteresis and dead zone effect and expand the effective input range.In the second part,the Active Disturbance Rejection Controller(ADRC)is employed to mitigate the hysteresis effects of the compensated system and remove the steady-state error,which allows real-time compensation of the estimated perturbations as state feedback to achieve the required performance.An experimental laboratory station has been fabricated to evaluate the proposed method.The test results show that the NHCC method can regulate the fan speed to the desired value(45 r/min at steady state)and broaden the effective input range to the full range under different engine conditions.Besides,the proposed control method can reduce the non-linearity of the input and output curves(from 18%to 4%)and compensate for the asymmetric hysteresis(from 38%to 5%).展开更多
This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterp...This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterparts, bio-inspired soft robots are primarily constructed from flexible materials, conferring upon them remarkable adaptability and flexibility to execute a multitude of tasks in complex environments. However, the classification of their driving technology poses a significant challenge owing to the diverse array of employed driving mechanisms and materials. Here, we classify several common soft actuation methods from the perspectives of the sources of motion in bio-inspired soft robots and their bio-inspired objects, effectively filling the classification system of soft robots, especially bio-inspired soft robots. Then, we summarize the driving principles and structures of various common driving methods from the perspective of bionics, and discuss the latest developments in the field of soft robot actuation from the perspective of driving modalities and methodologies. We then discuss the application directions of bio-inspired soft robots and the latest developments in each direction. Finally, after an in-depth review of various soft bio-inspired robot driving technologies in recent years, we summarize the issues and challenges encountered in the advancement of soft robot actuation technology.展开更多
ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the b...ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the biggest challenges of EHL-2 is how to achieve several MA current flat-tops with limited voltage-seconds(Vs)of the center solenoid(CS)coils.In order to minimize the consumption of Vs,a fully non-inductive start-up by electron cyclotron resonance heating(ECRH)will be applied in EHL-2.The ramp-up phase will be accomplished with the synergetic mode between the CS and non-inductive methods.The strategy of non-inductive start-up and ramp-up with synergetic mode has been verified on EXL-50U’s experiments.Based on this strategy,numerical simulations indicate the feasibility of EHL-2 achieving 3 MA plasma current.A high-performance steady-state scenario with Ip~1.5 MA is also designed.In this scenario,the bootstrap current fraction fBS>70%,the safety factor q at the magnetic axis q0>2,the minimum safety factor qmin>1,the poloidal betaβp>3 and normalized betaβN>2.3.Each design iteration integrates the validation of physical models with the constraints of engineering implementation,gradually optimizing the performance of the heating and current drive(H&CD)systems.Numerical simulation results for general auxiliary H&CD systems such as neutral beam injection(NBI),electron cyclotron(EC)wave,ion cyclotron wave(ICW),and lower hybrid wave(LHW)are presented.These simulation results ensure that the 31 MW H&CD systems comprehensively cover all scenarios while maintaining engineering feasibility.展开更多
This paper focuses on the high-voltage safety of drive motor systems in new energy vehicles and conducts standardized research on functional safety design in the concept phase. In view of the lack of high-voltage haza...This paper focuses on the high-voltage safety of drive motor systems in new energy vehicles and conducts standardized research on functional safety design in the concept phase. In view of the lack of high-voltage hazard analysis for drive motor systems in existing standards, based on theories such as GB/T 34590 and ISO 26262, the safety levels are deeply analyzed. The HAZOP method is innovatively used, and 16 types of guidewords are combined to comprehensively analyze the system functions, identifying vehicle hazards such as high-voltage electric shock caused by functional abnormalities, including high-voltage interlock function failure and abnormal active discharge. Subsequently, safety goals such as preventing high-voltage electric shock are set, functional safety requirements such as accurately obtaining collision signals and timely discharging high-voltage electricity are formulated, and requirements for external signal sources and other technologies are clearly defined, constructing a complete high-voltage safety protection system. The research results provide important technical support and standardized references for the high-voltage safety functional design of drive motor systems in new energy vehicles, and are of great significance for improving the high-voltage safety level of the new energy vehicle industry, expecting to play a key role in subsequent product development and standard improvement.展开更多
The high-quality development of grassroots teaching organizations in universities is crucial to improving the quality of higher education.From the perspective of dual-track drive,this paper deeply analyzes the synerge...The high-quality development of grassroots teaching organizations in universities is crucial to improving the quality of higher education.From the perspective of dual-track drive,this paper deeply analyzes the synergetic evolution relationship between institutions and teachers in the development of grassroots teaching organizations in universities.At present,the development of grassroots teaching organizations in universities is faced with such dilemmas as lagging institutional supply,insufficient motivation for teachers’development,and lack of synergy mechanisms.These interwoven problems have formed systemic obstacles restricting high-quality development,which urgently need in-depth analysis and resolution.Currently,only from the perspective of synergistic promotion of institutions and teachers and by constructing a systematic implementation framework can the existing problems be effectively solved.Through three dimensions-goal guidance,resource guarantee,and mechanism optimization-this paper refines nine specific measures,aiming to break the barriers between institutional development and teachers’development,form a joint force,provide theoretical support and practical paths for improving the efficiency of grassroots teaching organizations,promote the overall improvement of education and teaching quality,enhance the quality of talent training in universities,and advance the in-depth development of education and teaching reform.展开更多
1.Opportunities for electric motor drives in the low-altitude economy The implementation plan for the innovative application of general aviation equipment(2024–2030)outlines that by 2027,new general aviation equipmen...1.Opportunities for electric motor drives in the low-altitude economy The implementation plan for the innovative application of general aviation equipment(2024–2030)outlines that by 2027,new general aviation equipment will achieve commercial applications in urban air transport,logistics distribution and emergency rescue.展开更多
This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimiz...This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.展开更多
Abnormal driving behavior includes driving distraction,fatigue,road anger,phone use,and an exceptionally happy mood.Detecting abnormal driving behavior in advance can avoid traffic accidents and reduce the risk of tra...Abnormal driving behavior includes driving distraction,fatigue,road anger,phone use,and an exceptionally happy mood.Detecting abnormal driving behavior in advance can avoid traffic accidents and reduce the risk of traffic conflicts.Traditional methods of detecting abnormal driving behavior include using wearable devices to monitor blood pressure,pulse,heart rate,blood oxygen,and other vital signs,and using eye trackers to monitor eye activity(such as eye closure,blinking frequency,etc.)to estimate whether the driver is excited,anxious,or distracted.Traditional monitoring methods can detect abnormal driving behavior to a certain extent,but they will affect the driver’s normal driving state,thereby introducing additional driving risks.This research uses the combined method of support vector machine and dlib algorithm to extract 68 facial feature points from the human face,and uses an SVM model as a strong classifier to classify different abnormal driving statuses.The combined method reaches high accuracy in detecting road anger and fatigue status and can be used in an intelligent vehicle cabin to improve the driving safety level.展开更多
Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security ...Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security of the Loess Plateau(LP) by integrating ecosystem health and ecosystem services, explores the varying impacts of ecosystem structure, quality, and services on ecological security index(ESI), and identifies the key driving factors of ESI using the Geodetector model. The results show that:(1) the average ESI indicates a relatively safe ecological status in LP with a significant increase in ESI observed in 50.21% of the region, largely due to the ecological restoration programs.(2) Natural factors predominantly influence ESI, although human factors play a significant role in the earthy-rocky mountain region and plateau wind-sand region.(3) The interactions between driving factors have a much greater impact on ESI than any single factor, with the interactions between precipitation and human factors being the most influential combination. This study provides a novel perspective on assessing ecological security in LP. We recommend that future ecological restoration efforts should consider the varying roles of ecosystem structure, quality, and services in ESI while tailoring strategies to the primary driving factors based on local conditions.展开更多
Based on regional paleoclimate sequences,records of human activities,paleoclimate simulations,and detailed environmental historical records,we discuss the impacts of Holocene climate change and human activities on the...Based on regional paleoclimate sequences,records of human activities,paleoclimate simulations,and detailed environmental historical records,we discuss the impacts of Holocene climate change and human activities on the evolution of the Shule River in the western Qilian Mountains,China.The results indicate that during the early to mid-Holocene,the river evolution of the Shule River alluvial fan was closely related to regional climate fluctuations.In the late Holocene,flood agriculture began to emerge along the Shule River.During the historical period,population growth and the expansion of arable land led to increased river water usage,resulting in decreased access to the expected distribution of water resources in other regions,which in turn has caused imbalances in the regional hydrological ecosystem.展开更多
Achieving a reduction in global greenhouse gas(GHG)emissions requires collaborative efforts from the international community;however,a comprehensive understanding of the spatiotemporal characteristics(i.e.,complex emi...Achieving a reduction in global greenhouse gas(GHG)emissions requires collaborative efforts from the international community;however,a comprehensive understanding of the spatiotemporal characteristics(i.e.,complex emission networks and driver patterns)and the mutual influence of gross domestic product(GDP)and GHG emissions remains limited at a global level in the 21st century,which is not conducive to forming a consensus in global climate change negotiations and formulating relevant policies.To fill these gaps,this study comprehensively analyzes the complex network and driver pattern of GHG emissions,as well as the corresponding mutual influence with GDP for 185 countries during 2000-2021,based on social network analysis,the logarithmic Divisia decomposition approach,and panel vector autoregression model at global and regional levels.The results indicate that significant heterogeneity and inequality exist in terms of GHG emissions among regions and countries in different geographical areas and economic income levels.Additionally,GDP per capita and GHG emission intensity are the largest positive and negative drivers,respectively,affecting the increase in global GHG emissions.Furthermore,key countries,such as Germany and Canada,that could serve as coordinating bridges to strengthen collaboration in the global emission network are identified.This study highlights the need to encourage key participants in the emission network and foster international cooperation in governance,energy technology,and economic investment to address climate change.展开更多
The performance degradation of vehicle engine cylinder heads is a complex phenomenon,and the accurate prediction of their remaining useful life is essential for maintenance planning.To address the problem of low predi...The performance degradation of vehicle engine cylinder heads is a complex phenomenon,and the accurate prediction of their remaining useful life is essential for maintenance planning.To address the problem of low prediction accuracy caused by insufficient data mining depth in current prediction models for the remaining service life of engine cylinder heads,a prediction method of dualchannel model is proposed.Firstly,the driving status data of multiple vehicles is summarized and analyzed,and the on-board network common variables related to cylinder head life are screened.Secondly,driving segments are defined,the driving state features of each driving segment are extracted,and feature correlation analysis and principal component analysis are performed.All driving state profiles of the vehicle are divided using the clustering algorithm,and the cumulative degradation factors for driving state profiles are defined and calculated.Furthermore,the mileage of each driving segment is classified into intervals by applying fuzzy set theory,and the state transfer probability matrices of driving state profiles and driving segment mileage are calculated.A new engine head life prediction model based on dual channel Markov chain(DCMC)is established.Finally,the proposed method is applied to the residual life prediction of cylinder head of seven actual vehicles,and the comparison with actual life statistics results proved the validity of the proposed method.展开更多
Reducing greenhouse gas(GHG)emissions to address climate change is a global consensus,and municipal wastewater treatment plants(MWWTPs)should lead the way in low-carbon sustainable development.However,achieving efflue...Reducing greenhouse gas(GHG)emissions to address climate change is a global consensus,and municipal wastewater treatment plants(MWWTPs)should lead the way in low-carbon sustainable development.However,achieving effluent discharge standards often requires considerable energy and chemical consumption during operation,resulting in significant carbon footprints.In this study,GHG emissions are systematically accounted for,and the driving factors of carbon footprint growth in China’s MWWTPs are explored.In 2020,a total of 41.9 million tonnes(Mt)of carbon dioxide equivalent(CO_(2)-eq)were released by the sector,with nearly two-thirds being indirect emissions resulting from energy and material usage.The intensity of electricity,carbon source,and phosphorus removing agent consumption increasingly influence carbon footprint growth over time.Through statistical inference,benchmarks for electricity and chemical consumption intensity are established across all MWWTPs under various operational conditions,and the potential for mitigation through more efficient energy and material utilization is calculated.The results suggest that many MWWTPs offer significant opportunities for emission reduction.Consequently,empirical decarbonization measures,including intelligent device control,optimization of aeration equipment,energy recovery initiatives,and other enhancements to improve operational and carbon efficiency,are recommended.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12205274,12275251,12105270,12205272,12305262,and 12035002)the National Key Laboratory of Plasma Physics(Grant No.JCKYS2024212803)+2 种基金the Fund of the National Key Laboratory of Plasma Physics(Grant No.6142A04230103)the National Key R&D Program of China(Grant No.2023YFA1608400)the National Security Academic Fund(Grant No.U2430207).
文摘Stimulated Raman scattering(SRS)under a new ignition path that combines the advantages of direct-drive(DD)and indirect-drive(ID)schemes is investigated experimentally at the Shenguang-100 kJ facility.The results show that collective SRS in the plasma produced by ablating a polyimide film is detected for the ID beams,but is suppressed by adding a toe before the main pulse of the ID beams.The toe also strongly influences SRS of both the ID and DD beams excited in the plasma generated in the hohlraum.When a toe is used,the SRS spectra of the DD beams show that SRS tends to be excited in lower plasma density,which will result in a lower risk of super-hot electrons.Measurements of hot electrons support this conclusion.This research will help us produce a better pulse design for this new ignition path.
基金supported by the Science and Technology Project of State Grid Corporation of China Headquarters under Grant 5500-202416156A-1-1-ZN.
文摘Sine-wave drive and square-wave drive are two common motor control strategies.This study constructs a mathematical model capable of predicting the distribution of electromagnetic force waves in synchronous reluctance motors(SynRMs)under these two drive methods,and comparatively analyzes the vibration phenomena induced by electromagnetic forces under different drive methods.It aims to provide an effective tool for predicting the distribution of electromagnetic force waves in SynRMs,while exploring the influence of drive modes on their vibration characteristics.The study focuses on a 4-pole,36-slot 5.5 kW SynRM.Based on the magnetomotive force(MMF)-permeance method,incorporating the special rotor structure and the characteristics of current harmonics under square-wave drive,an air-gap flux distribution function is established.Meanwhile,Maxwell’s stress tensor method is adopted to analyze how the air-gap flux density relates to electromagnetic excitation force waves.Subsequently,this analysis is applied to forecast the spatiotemporal distribution features of radial electromagnetic force waves.Finite element simulations are conducted to compute the modal and vibration responses of the SynRM,followed by a comparative analysis of the vibration characteristics under the two drive methods.Additionally,a 6-pole,36-slot SynRM is used for additional comparative verification.Ultimately,the effectiveness of the simulation results is verified through experiments.
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
基金supported by the National Natural Science Foundation of China(Nos.52177059 and 52407064).
文摘Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.
基金Supported by the National Natural Science Foundation of China (11161027)。
文摘Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.
基金the National Natural Science Foundation of China(No.52075264)。
文摘With the continuous escalation of modern war,soldiers need to transport more combat materials to the combat area.The limited load-bearing capacity of soldiers seriously restricts their carrying capacity and mobility.It is urgent to develop a power-assisted exoskeleton robot suitable for individual combat.In the past,most power-assisted exoskeleton robots were driven by motors.This driving method has an excellent power-assisted effect,but the endurance is often insufficient.In view of this shortcoming,this study designed an ankle exoskeleton robot based on an active-passive combined drive through simulation analysis of human motion.It used OpenSim software to simulate and verify that the addition of spring could achieve a good effect.At the same time,according to the gait characteristics of the human body,the gait planning of an exoskeleton robot was carried out.Afterwards,theoretical analysis explained that the cooperation among spring,motor and wearer could be realized in this gait.Finally,the assisting ability and driving coordination of the active-passive combination driven ankle exoskeleton robot were verified through experiments.
基金Projects(52205069,52075083,52304049)supported by the National Natural Science Foundation of ChinaProject(2021-BS-164)supported by the Liaoning Province Doctoral Research Startup Fund,China+2 种基金Project(LJKZ0264)supported by the Science and Technology Research Projects of Education Department of Liaoning Province,ChinaProject(G2022003010L)supported by the High-end Foreign Experts Recruitment Plan of ChinaProject(E2021203095)supported by the Natural Science Foundation for Young Scholars of Hebei Province,China。
文摘The worm wheel whose undercutting characteristic is researched is a member of offsetting normal arc-toothed cylindrical worm drive.The tooth profile of the worm in its offsetting normal section is a circular arc.The normal vector used to calculate the first-type limit function is determined in the natural frame without the aid of the curvature parameter of worm helicoid.The first-type limit line is ascertained via solving the nonlinear equations iteratively.It is discovered that one first-type limit line exists on the tooth surface of worm wheel by numerical simulation,and such a line is normally located out of the meshing zone.Only one intersection point exists between the first and second-types of limit lines,and this point is a lubrication weak point.The undercutting mechanism is essentially that a part of the meshing zone near the conjugated line of worm tooth crest will come into the undercutting area and will be cut off during machining the worm wheel.The machining simulation verifies the correctness of undercutting mechanism.Moreover,a convenient and practical characteristic quantity is proposed to judge whether the undercutting exists in the whole meshing zone via computing the first-type limit function values on the worm tooth crest.
文摘The Hydro-Viscous Drive(HVD)speed regulating system finds extensive application in air transport transmission systems to regulate the stepless speed or conduct overload protection.However,its intrinsic hysteretic behaviors,such as the asymmetric hysteretic and dead zone,could introduce inaccuracy and delay in control applications,posing challenges to system regulation.This paper investigates a Nonlinear Hysteresis Compensation Control(NHCC)that consists of two parts to control the HVD output speed by operating the valve under different engine operating conditions.In the first part,the Inverse Hysteresis Compensator(IHC)based on major loop data is introduced for the asymmetric hysteresis characterization and compensation of the HVD speed control system of the power generation and distribution,which aims to reduce the hysteresis and dead zone effect and expand the effective input range.In the second part,the Active Disturbance Rejection Controller(ADRC)is employed to mitigate the hysteresis effects of the compensated system and remove the steady-state error,which allows real-time compensation of the estimated perturbations as state feedback to achieve the required performance.An experimental laboratory station has been fabricated to evaluate the proposed method.The test results show that the NHCC method can regulate the fan speed to the desired value(45 r/min at steady state)and broaden the effective input range to the full range under different engine conditions.Besides,the proposed control method can reduce the non-linearity of the input and output curves(from 18%to 4%)and compensate for the asymmetric hysteresis(from 38%to 5%).
基金Fundamental Research Funds for the Central Universities(No.2024JBMC011)Aeronautical Science Foundation of China(No.2024Z0560M5001).
文摘This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterparts, bio-inspired soft robots are primarily constructed from flexible materials, conferring upon them remarkable adaptability and flexibility to execute a multitude of tasks in complex environments. However, the classification of their driving technology poses a significant challenge owing to the diverse array of employed driving mechanisms and materials. Here, we classify several common soft actuation methods from the perspectives of the sources of motion in bio-inspired soft robots and their bio-inspired objects, effectively filling the classification system of soft robots, especially bio-inspired soft robots. Then, we summarize the driving principles and structures of various common driving methods from the perspective of bionics, and discuss the latest developments in the field of soft robot actuation from the perspective of driving modalities and methodologies. We then discuss the application directions of bio-inspired soft robots and the latest developments in each direction. Finally, after an in-depth review of various soft bio-inspired robot driving technologies in recent years, we summarize the issues and challenges encountered in the advancement of soft robot actuation technology.
基金supported by ENN Group and ENN Energy Research Institute.The authors would like to express their gratitude for the contributions of the ENN fusion team and collaborators,such as Tiantian Sun,Haojie Ma,and Yong Guo,in supporting these endeavours.The authors also acknowledge the support of the National SuperComputer Center in Tianjin and Beijing PARATERA Tech Corp.,Ltd.,for providing HPC resources that have contributed to the research results reported in this paper.This work was partly supported by National Natural Science Fundation of China(Nos.12375215 and 12475210).
文摘ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the biggest challenges of EHL-2 is how to achieve several MA current flat-tops with limited voltage-seconds(Vs)of the center solenoid(CS)coils.In order to minimize the consumption of Vs,a fully non-inductive start-up by electron cyclotron resonance heating(ECRH)will be applied in EHL-2.The ramp-up phase will be accomplished with the synergetic mode between the CS and non-inductive methods.The strategy of non-inductive start-up and ramp-up with synergetic mode has been verified on EXL-50U’s experiments.Based on this strategy,numerical simulations indicate the feasibility of EHL-2 achieving 3 MA plasma current.A high-performance steady-state scenario with Ip~1.5 MA is also designed.In this scenario,the bootstrap current fraction fBS>70%,the safety factor q at the magnetic axis q0>2,the minimum safety factor qmin>1,the poloidal betaβp>3 and normalized betaβN>2.3.Each design iteration integrates the validation of physical models with the constraints of engineering implementation,gradually optimizing the performance of the heating and current drive(H&CD)systems.Numerical simulation results for general auxiliary H&CD systems such as neutral beam injection(NBI),electron cyclotron(EC)wave,ion cyclotron wave(ICW),and lower hybrid wave(LHW)are presented.These simulation results ensure that the 31 MW H&CD systems comprehensively cover all scenarios while maintaining engineering feasibility.
文摘This paper focuses on the high-voltage safety of drive motor systems in new energy vehicles and conducts standardized research on functional safety design in the concept phase. In view of the lack of high-voltage hazard analysis for drive motor systems in existing standards, based on theories such as GB/T 34590 and ISO 26262, the safety levels are deeply analyzed. The HAZOP method is innovatively used, and 16 types of guidewords are combined to comprehensively analyze the system functions, identifying vehicle hazards such as high-voltage electric shock caused by functional abnormalities, including high-voltage interlock function failure and abnormal active discharge. Subsequently, safety goals such as preventing high-voltage electric shock are set, functional safety requirements such as accurately obtaining collision signals and timely discharging high-voltage electricity are formulated, and requirements for external signal sources and other technologies are clearly defined, constructing a complete high-voltage safety protection system. The research results provide important technical support and standardized references for the high-voltage safety functional design of drive motor systems in new energy vehicles, and are of great significance for improving the high-voltage safety level of the new energy vehicle industry, expecting to play a key role in subsequent product development and standard improvement.
基金Interim results of the 2024 high-quality development project at Jingjiang College,Jiangsu University,titled“Research on the Teacher Evaluation Mechanism of Independent Colleges Based on the Three-Dimensional System of Innovation-Efficiency-Impact”(2024JFYA001)Interim results of the special project“Research on the Digitalization of Textbooks in the New Era”in Jiangsu Province’s universities in 2024(2024JCSZ37)。
文摘The high-quality development of grassroots teaching organizations in universities is crucial to improving the quality of higher education.From the perspective of dual-track drive,this paper deeply analyzes the synergetic evolution relationship between institutions and teachers in the development of grassroots teaching organizations in universities.At present,the development of grassroots teaching organizations in universities is faced with such dilemmas as lagging institutional supply,insufficient motivation for teachers’development,and lack of synergy mechanisms.These interwoven problems have formed systemic obstacles restricting high-quality development,which urgently need in-depth analysis and resolution.Currently,only from the perspective of synergistic promotion of institutions and teachers and by constructing a systematic implementation framework can the existing problems be effectively solved.Through three dimensions-goal guidance,resource guarantee,and mechanism optimization-this paper refines nine specific measures,aiming to break the barriers between institutional development and teachers’development,form a joint force,provide theoretical support and practical paths for improving the efficiency of grassroots teaching organizations,promote the overall improvement of education and teaching quality,enhance the quality of talent training in universities,and advance the in-depth development of education and teaching reform.
基金supported by the National Natural Science Foundation of China(No.52407064)。
文摘1.Opportunities for electric motor drives in the low-altitude economy The implementation plan for the innovative application of general aviation equipment(2024–2030)outlines that by 2027,new general aviation equipment will achieve commercial applications in urban air transport,logistics distribution and emergency rescue.
文摘This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.
文摘Abnormal driving behavior includes driving distraction,fatigue,road anger,phone use,and an exceptionally happy mood.Detecting abnormal driving behavior in advance can avoid traffic accidents and reduce the risk of traffic conflicts.Traditional methods of detecting abnormal driving behavior include using wearable devices to monitor blood pressure,pulse,heart rate,blood oxygen,and other vital signs,and using eye trackers to monitor eye activity(such as eye closure,blinking frequency,etc.)to estimate whether the driver is excited,anxious,or distracted.Traditional monitoring methods can detect abnormal driving behavior to a certain extent,but they will affect the driver’s normal driving state,thereby introducing additional driving risks.This research uses the combined method of support vector machine and dlib algorithm to extract 68 facial feature points from the human face,and uses an SVM model as a strong classifier to classify different abnormal driving statuses.The combined method reaches high accuracy in detecting road anger and fatigue status and can be used in an intelligent vehicle cabin to improve the driving safety level.
基金National Natural Science Foundation of China,No.42371103Natural Science Basic Research Plan in Shaanxi Province of China,No.2023-JC-YB-229。
文摘Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security of the Loess Plateau(LP) by integrating ecosystem health and ecosystem services, explores the varying impacts of ecosystem structure, quality, and services on ecological security index(ESI), and identifies the key driving factors of ESI using the Geodetector model. The results show that:(1) the average ESI indicates a relatively safe ecological status in LP with a significant increase in ESI observed in 50.21% of the region, largely due to the ecological restoration programs.(2) Natural factors predominantly influence ESI, although human factors play a significant role in the earthy-rocky mountain region and plateau wind-sand region.(3) The interactions between driving factors have a much greater impact on ESI than any single factor, with the interactions between precipitation and human factors being the most influential combination. This study provides a novel perspective on assessing ecological security in LP. We recommend that future ecological restoration efforts should consider the varying roles of ecosystem structure, quality, and services in ESI while tailoring strategies to the primary driving factors based on local conditions.
基金The National Natural Science Foundation of China(Grant 42371159)。
文摘Based on regional paleoclimate sequences,records of human activities,paleoclimate simulations,and detailed environmental historical records,we discuss the impacts of Holocene climate change and human activities on the evolution of the Shule River in the western Qilian Mountains,China.The results indicate that during the early to mid-Holocene,the river evolution of the Shule River alluvial fan was closely related to regional climate fluctuations.In the late Holocene,flood agriculture began to emerge along the Shule River.During the historical period,population growth and the expansion of arable land led to increased river water usage,resulting in decreased access to the expected distribution of water resources in other regions,which in turn has caused imbalances in the regional hydrological ecosystem.
基金supported by the Humanities and Social Sciences Youth Foundation,Ministry of Education of China[Grant No.24YJC630248]Sichuan Office of Philosophy and Social Science,China[Grant No.SCJJ24ND299].
文摘Achieving a reduction in global greenhouse gas(GHG)emissions requires collaborative efforts from the international community;however,a comprehensive understanding of the spatiotemporal characteristics(i.e.,complex emission networks and driver patterns)and the mutual influence of gross domestic product(GDP)and GHG emissions remains limited at a global level in the 21st century,which is not conducive to forming a consensus in global climate change negotiations and formulating relevant policies.To fill these gaps,this study comprehensively analyzes the complex network and driver pattern of GHG emissions,as well as the corresponding mutual influence with GDP for 185 countries during 2000-2021,based on social network analysis,the logarithmic Divisia decomposition approach,and panel vector autoregression model at global and regional levels.The results indicate that significant heterogeneity and inequality exist in terms of GHG emissions among regions and countries in different geographical areas and economic income levels.Additionally,GDP per capita and GHG emission intensity are the largest positive and negative drivers,respectively,affecting the increase in global GHG emissions.Furthermore,key countries,such as Germany and Canada,that could serve as coordinating bridges to strengthen collaboration in the global emission network are identified.This study highlights the need to encourage key participants in the emission network and foster international cooperation in governance,energy technology,and economic investment to address climate change.
基金Supported by the Open Project Fund of the National Key Laboratory of Internal Combustion Engine and Power System(No.skler-202102).
文摘The performance degradation of vehicle engine cylinder heads is a complex phenomenon,and the accurate prediction of their remaining useful life is essential for maintenance planning.To address the problem of low prediction accuracy caused by insufficient data mining depth in current prediction models for the remaining service life of engine cylinder heads,a prediction method of dualchannel model is proposed.Firstly,the driving status data of multiple vehicles is summarized and analyzed,and the on-board network common variables related to cylinder head life are screened.Secondly,driving segments are defined,the driving state features of each driving segment are extracted,and feature correlation analysis and principal component analysis are performed.All driving state profiles of the vehicle are divided using the clustering algorithm,and the cumulative degradation factors for driving state profiles are defined and calculated.Furthermore,the mileage of each driving segment is classified into intervals by applying fuzzy set theory,and the state transfer probability matrices of driving state profiles and driving segment mileage are calculated.A new engine head life prediction model based on dual channel Markov chain(DCMC)is established.Finally,the proposed method is applied to the residual life prediction of cylinder head of seven actual vehicles,and the comparison with actual life statistics results proved the validity of the proposed method.
基金supported by the National Natural Science Foundation of China(52200228 and 72022004)the National Key Research and Development Program of China(2021YFC3200205 and 2022YFC3203704).
文摘Reducing greenhouse gas(GHG)emissions to address climate change is a global consensus,and municipal wastewater treatment plants(MWWTPs)should lead the way in low-carbon sustainable development.However,achieving effluent discharge standards often requires considerable energy and chemical consumption during operation,resulting in significant carbon footprints.In this study,GHG emissions are systematically accounted for,and the driving factors of carbon footprint growth in China’s MWWTPs are explored.In 2020,a total of 41.9 million tonnes(Mt)of carbon dioxide equivalent(CO_(2)-eq)were released by the sector,with nearly two-thirds being indirect emissions resulting from energy and material usage.The intensity of electricity,carbon source,and phosphorus removing agent consumption increasingly influence carbon footprint growth over time.Through statistical inference,benchmarks for electricity and chemical consumption intensity are established across all MWWTPs under various operational conditions,and the potential for mitigation through more efficient energy and material utilization is calculated.The results suggest that many MWWTPs offer significant opportunities for emission reduction.Consequently,empirical decarbonization measures,including intelligent device control,optimization of aeration equipment,energy recovery initiatives,and other enhancements to improve operational and carbon efficiency,are recommended.