Diabetic wounds represent a significant challenge in the medical field,significantly impacting patient quality of life and imposing a heavy burden on healthcare systems.Intelligent hydrogel dressings have attracted si...Diabetic wounds represent a significant challenge in the medical field,significantly impacting patient quality of life and imposing a heavy burden on healthcare systems.Intelligent hydrogel dressings have attracted significant attention in diabetic wound treatment due to their unique properties.This review systematically explores the three main categories of intelligent hydrogels(natural,synthetic,and composite),dissecting their composition,structure,and the mechanisms that enable their intelligent responses.The crucial roles of these dressings in maintaining a moist wound environment,efficiently absorbing exudate,and precisely delivering drugs are expounded.Moreover,their application advantages in combating bacteria and infections,regulating inflammation and immunity,promoting angiogenesis and tissue regeneration,as well as enabling real-time monitoring and personalized treatment,are explored in depth.Additionally,we discuss future research directions and the prospects for personalized precision medicine in diabetic wound care,aiming to inspire innovation and provide a comprehensive theoretical basis for the development of nextgeneration intelligent dressings.展开更多
Diabetic wounds(DWs)are a major complication of diabetes mellitus,characterized by a complex patho-physiological microenvironment that is associated with elevated morbidity and mortality.Conventional management strate...Diabetic wounds(DWs)are a major complication of diabetes mellitus,characterized by a complex patho-physiological microenvironment that is associated with elevated morbidity and mortality.Conventional management strategies often fail to address the multifaceted nature of these wounds effectively.Recent advancements in understanding the mechanisms of DW healing have spurred the development of a plethora of bioactive dressings designed to interact with and modulate the DW microenvironment.These innovations have culminated in the introduction of the“microenvironment-sensitive with on-demand management”paradigm aimed at delivering precision therapy responsive to dynamic changes within DW.Despite these advancements,the current literature lacks a comprehensive review that cate-gorizes and evaluates active,passive,and on-demand approaches that address the DW microenviron-ment.Herein,we describe the unique pathogenic mechanisms and microenvironmental characteristics that distinguish DW from normal acute wounds.This review provides an extensive overview of contem-porary active and passive management strategies incorporating on-demand management principles designed for DW microenvironments.Furthermore,it addresses the principal challenges faced in this therapeutic domain and outlines the potential innovations that can enhance the efficacy and specificity of bioactive dressings.The insights presented here aim to guide further research and development in the on-demand management of DW to improve patient outcomes by aligning personalized therapy modali-ties with the pathophysiological realities of DW.展开更多
BACKGROUND Pressure ulcer(PU)are prevalent among critically ill trauma patients,posing substantial risks.Bundled care strategies and silver nanoparticle dressings offer potential solutions,yet their combined effective...BACKGROUND Pressure ulcer(PU)are prevalent among critically ill trauma patients,posing substantial risks.Bundled care strategies and silver nanoparticle dressings offer potential solutions,yet their combined effectiveness and impact on patient satisfaction remain insufficiently investigated.AIM To assess the impact of bundled care along with silver nanoparticle dressing on PUs management and family satisfaction in critically ill trauma patients.METHODS A total of 98 critically ill trauma patients with PUs in intensive care unit(ICU)were included in this study.Patients were randomly assigned to either the control group(conventional care with silver nanoparticle dressing,n=49)or the intervention group(bundled care with silver nanoparticle dressing,n=49).The PU Scale for Healing(PUSH)tool was used to monitor changes in status of pressure injuries over time.Assessments were conducted at various time points:Baseline(day 0)and subsequent assessments on day 3,day 6,day 9,and day 12.Family satisfaction was assessed using the Family Satisfaction ICU 24 ques-tionnaire.RESULTS No significant differences in baseline characteristics were observed between the two groups.In the intervention group,there were significant reductions in total PUSH scores over the assessment period.Specifically,surface area,exudate,and tissue type parameters all showed significant improvements compared to the control group.Family satisfaction with care and decision-making was notably higher in the intervention group.Overall family satisfaction was significantly better in the intervention group.CONCLUSION Bundled care in combination with silver nanoparticle dressings effectively alleviated PUs and enhances family satisfaction in critically ill trauma patients.This approach holds promise for improving PUs management in the ICU,benefiting both patients and their families.展开更多
Silver-containing dressings have gained popularity in clinical applications due to their exceptional antibacterial properties and ability to enhance wound healing.These dressings primarily exert their antibacterial ef...Silver-containing dressings have gained popularity in clinical applications due to their exceptional antibacterial properties and ability to enhance wound healing.These dressings primarily exert their antibacterial effects through the utilization of silver ions or nano-silver particles.The antimicrobial property of silver ions is a result of multiple mechanisms,with the most significant being the interaction between Ag or Ag+and the bacterial cell wall,as well as the interaction between Ag+and bacterial DNA or RNA,which inhibits replication and division.Silver-containing dressings can effectively reduce inflammation in wound tissue and expedite wound healing.The antibacterial and wound-healing promoting effects of these dressings are closely associated with the controlled release rate of silver ions.Consequently,developing novel silver-containing dressings that accurately regulate this release rate has become a prominent area of research interest.With broad prospects for application in wound care,silver-containing dressings are anticipated to offer innovative solutions for addressing numerous challenges encountered in clinical wound management.展开更多
Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)...Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.展开更多
Natural hydrogels have emerged as a pivotal innovation in wound care,offering a unique combination of high absorbency,biocompatibility,and versatility.However,due to the complexity of wound healing,the physiological s...Natural hydrogels have emerged as a pivotal innovation in wound care,offering a unique combination of high absorbency,biocompatibility,and versatility.However,due to the complexity of wound healing,the physiological state of the wound varies dynamically,and the mechanism of natural hydrogels that boost wound healing is still unclear.In this review,we firstly provide a comprehensive introduction to the bio-logical process of wound healing,emphasizing the critical stages and factors affecting healing.This work concludes the composition and properties of natural hydrogels,including collagen,gelatin,hyaluronic acid,chitosan,alginates,cellulose,and fibroin,highlighting their biocompatibility and biodegradability.The focus shifts to the various crosslinking strategies employed to enhance the structural integrity and functionality of natural hydrogels.This review further investigates the biological effects of natural hydro-gels in wound healing,detailing their antibacterial,antioxidant,anti-inflammatory,adhesive,and hemo-static functions.Furthermore,we propose the challenges and future perspectives of natural hydrogels in practical applications.This review offers a comprehensive overview of the current state and poten-tial future advancements in natural hydrogel dressings for wound care,highlighting their critical role in addressing complex and hard-to-heal wounds.展开更多
The aim of this study was to evaluate the cost and effectiveness of soft silicone foam dressings (SSFD, Mepilex) on the treatment of pressure ulcers. We searched electronic databases and retrieved articles to make a...The aim of this study was to evaluate the cost and effectiveness of soft silicone foam dressings (SSFD, Mepilex) on the treatment of pressure ulcers. We searched electronic databases and retrieved articles to make a systematic evaluation, and then make a cost-effectiveness analysis by decision tree model combined with data from clinical treatments. The result shows that compared with the common sterile gauze, SSFD possesses an apparent advantage. The effective ratio is 96.3% versus 77.3%, although the cost of SSFD is much higher than that of sterile gauze, Mepilex appears to be more cost-effectiveness for preventive use.展开更多
Bacterial infections are a major cause of chronic infections.Thus,antibacterial material is an urgent need in clinics.Antibacterial nanofibers,with expansive surface area,enable efficient incorporation of antibacteria...Bacterial infections are a major cause of chronic infections.Thus,antibacterial material is an urgent need in clinics.Antibacterial nanofibers,with expansive surface area,enable efficient incorporation of antibacterial agents.Meanwhile,structure similar to the extracellular matrix can accelerate cell growth.Electrospinning,the most widely used technique to fabricate nanofiber,is often used in many biomedical applications including drug delivery,regenerative medicine,wound healing and so on.Thus,this review provides an overview of all recently published studies on the development of electrospun antibacterial nanofibers in wound dressings and tissue me-dicinal fields.This reviewer begins with a brief introduction of electrospinning process and then discusses electrospun fibers by incorporating various types of antimicrobial agents used as in wound dressings and tissue.Finally,we finish with conclusions and further perspectives on electrospun antibacterial nanofibers as 2D biomedicine materials.展开更多
Objective: To study the effect of vacuum sealing drainage combined with biological dressings on the angiogenesis and inflammatory response after diabetic foot ulcer wound grafting. Methods: Patients with diabetic foot...Objective: To study the effect of vacuum sealing drainage combined with biological dressings on the angiogenesis and inflammatory response after diabetic foot ulcer wound grafting. Methods: Patients with diabetic foot who were treated in Sichuan Provincial People's Hospital between May 2014 and February 2017 were selected and randomly divided into vacuum drainage group and normal control group who received vacuum sealing drainage combined with biological dressings as well as conventional debridement and dressing change to deal with the wound respectively. Before treatment as well as 1 d, 3 d and 5 d after treatment, the wound tissue was collected to determine the expression of angiogenesis molecules, angiogenesis signaling pathway molecules and inflammatory response molecules. Results: 1 d, 3 d and 5 d after treatment, VEGF, VEGFR, CD105, MMP9, PI3K, AKT, cyclinD1, p38MAPK and NF-kB protein expression in wound tissue of vacuum drainage group were significantly higher than those of normal control group while COX-2, iNOS, TNF-α and IL-6 mRNA expression were significantly lower than those of normal control group. Conclusion: Vacuum sealing drainage combined with biological dressings promotes the angiogenesis and inhibits the inflammatory response after diabetic foot ulcer wound grafting.展开更多
Emulsifying properties of bitter orange (Citrus aurantium) juice-olive oil salad dressings stabilized with different polysaccharides were investigated. Oil-in-water emulsions (50:50, v/v) were prepared with bitte...Emulsifying properties of bitter orange (Citrus aurantium) juice-olive oil salad dressings stabilized with different polysaccharides were investigated. Oil-in-water emulsions (50:50, v/v) were prepared with bitter orange juice-olive oil in the presence of various concentrations (0.1%-1.0%, w/v) of pectin or guar gum or iota-(t-)carrageenan and then these emulsions were homogenized. Emulsion activity index (EAI) and emulsion stability index (ESI) were determined spectrophotometrically by measuring time-dependent changes in turbidity. Creaming stability of emulsions was followed by visual observation of serum layer with respect to time. Microstructures of emulsions were examined by using polarized light microscopy. The addition of polysaccharides improved emulsion stability and emulsions containing higher amounts of polysaccharide were more stable against creaming. Microscopic observations showed that emulsions containing polysaccharides had small droplets as compared to that of emulsions without polysaccharides and emulsions were flocculated due to the presence of polysaccharides. Larger droplets and creaming were observed when the polysaccharide concentration was not sufficient for coverage.展开更多
The hydrogel wound dressing based on polyvinyl alcohol (PVA) was prepared by the freezing-thawing cyclic method. The dehydration kinetics of prepared hydrogels was determined using the experimental method and mathem...The hydrogel wound dressing based on polyvinyl alcohol (PVA) was prepared by the freezing-thawing cyclic method. The dehydration kinetics of prepared hydrogels was determined using the experimental method and mathematical modeling based on diffusion mechanism. The results show that the dehydration rate of PVA hydrogel wound dressing inversely depends on the hydrogel thickness as well as water content of the wound. On the other hand, the initial water content of hydrogel and the atmospheric humidity have little direct effect on the dehydration rate. The good agreement between experimental and mathematical modeling results in early stages of dehydration process shows that the predominate factor determining the dehydration of these wound dressings is diffusion.展开更多
For most traditional wound dressings,it is challenging to simultaneously eliminate bacteria and promote angiogenesis to accelerate the healing process of bacteria-infected wounds.In this work,we develop a multifunctio...For most traditional wound dressings,it is challenging to simultaneously eliminate bacteria and promote angiogenesis to accelerate the healing process of bacteria-infected wounds.In this work,we develop a multifunctional dressing based on bacterial cellulose(BC)deposited with a tannic acid/Cu^(2+)ion/Mg^(2+)ion(TCM)complex film.Overall,the TCM complex exhibits robust interfacial adhesion to modify BC and good photothermal properties to effectively eradicate bacteria in the wound area under near-infrared(NIR)irradiation.The individual components of the TCM complex have several advantageous features for wound healing,such as antibacterial ability and negligible cytotoxicity;in particular,the released Cu^(2+)and Mg^(2+)ions are favorable for the proliferation,migration,and tube formation of endothelial cells in vitro.The results of in vivo experiments demonstrated that with the assistance of NIR irradiation,this composite dressing is more effective than traditional gauze or pristine BC dressing in promotion of angiogenesis and collagen deposition without causing remarkable inflammation,thereby accelerating the healing process of bacteria-infected full-thickness skin wounds.This work thus provides a simple and facile way to fabricate multifunctional BC-based dressings that could be potentially used for treating infected wounds.展开更多
Objective:Research on the effect of moist wound healing theory in a combination with modern new dressing treatment in patients diagnosed with pressure ulcers.Method:Selected 30 patients with pressure ulcers from our h...Objective:Research on the effect of moist wound healing theory in a combination with modern new dressing treatment in patients diagnosed with pressure ulcers.Method:Selected 30 patients with pressure ulcers from our hospital,which is Shandong Tai an Municipal Hospital,from January 2019 to January 2021 were divided into experimental group(15 cases,treated with moist wound healing theory combined with modern new dressings)and control group(15 cases,applied conventional treatments).The treatment effect,time of wound edema subsidence,wound healing time,number of dressing changes,granulation tissue growth time,and diameter reduction time were compared between the two groups.Results:The total effective rate of the experimental group(93.33%,14/15)was higher than that of the control group(53.33%,8/15),P<0.05;the time to subsidence of wound edema in the experimental group was(3.11±0.22),and the time for wound healing was(12.78±0.45),the number of dressing changes(7.13±0.34)times,the growth time of granulation tissue(5.43±2.22),the diameter reduction time(6.25±3.75),compared with the control group,P<0.05.Conclusion:In the clinical treatment of patients diagnosed with pressure ulcers,the effective combination of moist healing theory and modern new dressing therapy has significant effects,whereby it speeds up the healing process of the pressure ulcers,and it is proven to be worthy to be promoted for usage.展开更多
In the present work an attempt has been made to design the antibiotic drug loaded carbopolpoly( NVP) based hydrogel wound dressings for better wound care. The polymer films were characterized by SEM-EDX, AFM, FTIR, 13...In the present work an attempt has been made to design the antibiotic drug loaded carbopolpoly( NVP) based hydrogel wound dressings for better wound care. The polymer films were characterized by SEM-EDX, AFM, FTIR, 13CNMR, TGA/DTA/DTG, DSC, and swelling studies. Besides drug release, various biomedical properties (viz. blood compatibility, mucoadhesion, oxygen permeability, water vapour transmission rate, microbial penetration, tensile strength, bursting strength, resilience, stress relaxation, and folding endurance) have also been studied. The polymer films have been observed to be biocompatible, permeable to oxygen and water vapour and have absorbed simulated wound fluid 11.37±0.31g/g of polymer film. The drug release profile followed the Case-II diffusion mechanism and release profile best fitted in Hixson-Crowell’s kinetic models. Mechanical properties results showed that the polymer film had 0.65±0.12 Nmm??2 tensile strength, 119.38±14.26% elongationand 25.49±0.72% resilience.展开更多
Objective: to summarize the nursing of one case of ileostomy with peripheral irritant dermatitis. Methods: one case of ileostomy with peripheral irritant dermatitis was treated with hydrocolloid dressing, combined wit...Objective: to summarize the nursing of one case of ileostomy with peripheral irritant dermatitis. Methods: one case of ileostomy with peripheral irritant dermatitis was treated with hydrocolloid dressing, combined with colostomy powder and 3M painless skin protective membrane. Discussion: the application of wet healing theory and new dressing can promote the early healing of wound and deal with skin irritating dermatitis. The healing rate is high and the healing time is significantly shortened. Result: it can obviously relieve pain, promote skin growth and wound healing.展开更多
The multi-Fano interference,which is obtained through the simultaneous acquisition of bright and dark states in different phase transitions of Eu3+:BiPO4(7:1,6:1,1:1,and 0.5:1)and Eu3+:NaYF4(1:1/4)crystals,were report...The multi-Fano interference,which is obtained through the simultaneous acquisition of bright and dark states in different phase transitions of Eu3+:BiPO4(7:1,6:1,1:1,and 0.5:1)and Eu3+:NaYF4(1:1/4)crystals,were reported in this work.Multidressed spontaneous four-wave mixing and multidressed fluorescence(multiorder)were adopted to optimize the strong photon–phonon nested dressing effect,which results in more obvious multi-Fano interference.Firstly,the multi-Fano is produced through interference in continuous and multibound states.Secondly,five multi-Fano dips are originated from the nested five dressings(one photon and four phonons)under symmetrical splitting of 7F1 energy level.It is found that the pure H-phase(0.5:1)sample exhibits the strongest photon–phonon dressed effect(five Fano dips).Further,high-order non-Hermitian exceptional points in multi-Fano interference were investigated by adjusting the ratio of Rabi frequency to dephase rate through nested photon and phonon dressing.The experimental results are validated by theoretical simulations,which may be applied to designing optoelectronic devices such as non-Hermitian multi-Fano interferences(multichannel)router.展开更多
Burn wounds are destructive skin traumas typically of irregular shape and large area. Prone to infection, they require frequent dressing replacement, and painless removal of dressings from burn wounds remains a major ...Burn wounds are destructive skin traumas typically of irregular shape and large area. Prone to infection, they require frequent dressing replacement, and painless removal of dressings from burn wounds remains a major challenge. This study focuses on the dynamic characteristics and treatment difficulty of burn wounds. Hydrogel dressings based on glycol chitosan and propionaldehyde-or benzaldehyde-terminated 4-arm poly(ethylene glycol) were designed on the basis of Schiff base cross-linking networks. The hydrogels exhibited shape-adaptability, self-healing and fast-degradation properties, which makes these hydrogels suitable for burn wounds. Salvianolic acid B(SaB)-loaded hydrogel exhibited good antioxidant properties in vitro. In a rat model of deep second-degree burn wounds, the SaB-loaded hydrogel could quickly reduce wound temperature, regulate wound oxidant microenvironment, promote angiogenesis, and accelerate wound healing. Thus, the drug-loaded hydrogel shows significant potential as a first-aid dressing for treatment of burn wounds.展开更多
Histopathological analysis of chronic wounds is crucial for clinicians to accurately assess wound healing progress and detect potential malignancy.However,traditional pathological tissue sections require specific stai...Histopathological analysis of chronic wounds is crucial for clinicians to accurately assess wound healing progress and detect potential malignancy.However,traditional pathological tissue sections require specific staining procedures involving carcinogenic chemicals.This study proposes an interdisciplinary approach merging materials science,medicine,and artificial intelligence(AI)to develop a virtual staining technique and intelligent evaluation model based on deep learning for chronic wound tissue pathology.This innovation aims to enhance clinical diagnosis and treatment by offering personalized AI-driven therapeutic strategies.By establishing a mouse model of chronic wounds and using a series of hydrogel wound dressings,tissue pathology sections were periodically collected for manual staining and healing assessment.We focused on leveraging the pix2pix image translation framework within deep learning networks.Through CNN models implemented in Python using PyTorch,our study involves learning and feature extraction for region segmentation of pathological slides.Comparative analysis between virtual staining and manual staining results,along with healing diagnosis conclusions,aims to optimize AI models.Ultimately,this approach integrates new metrics such as image recognition,quantitative analysis,and digital diagnostics to formulate an intelligent wound assessment model,facilitating smart monitoring and personalized treatment of wounds.In blind evaluation by pathologists,minimal disparities were found between virtual and conventional histologically stained images of murine wound tissue.The evaluation used pathologists’average scores on real stained images as a benchmark.The scores for virtual stained images were 71.1%for cellular features,75.4%for tissue structures,and 77.8%for overall assessment.Metrics such as PSNR(20.265)and SSIM(0.634)demonstrated our algorithms’superior performance over existing networks.Eight pathological features such as epidermis,hair follicles,and granulation tissue can be accurately identified,and the images were found to be more faithful to the actual tissue feature distribution when compared to manually annotated data.展开更多
Background Transparent dressings are commonly used to cover central venous catheter sites. However, it has been suggested that they might not allow adequate moisture vapor transmission, resulting in local moistness th...Background Transparent dressings are commonly used to cover central venous catheter sites. However, it has been suggested that they might not allow adequate moisture vapor transmission, resulting in local moistness that promotes bacterial growth. We compared the moisture vapor transmission rates (MVTRs) of different, currently used transparent and traditional gauze dressings. We aimed to determine the MVTRs at different temperatures and humidities. Methods The dressings were used to seal 50-ml plastic centrifuge tubes containing 20 ml deionized water: Tubes in group 1 were covered with 12 layers of ordinary gauze, group 2 with IV3000, group 3 with OPSITE FLEXlGRID, group 4 with 3M HP Tegaderm, and group 5 with 3M Tegaderm. The tubes were placed upright in an artificial climate cabinet, so that the dressings were not touching the water, in order to simulate the conditions of medical dressings in contact with the skin. The average MVTRs were determined under different conditions. MVTRs were also determined with tubes from groups 2-5 laid on their sides, allowing the dressings to touch the water, so simulating contact of the dressings with sweating skin, or wounded skin with exudates. We also calculated the dressings' self-reactive abilities by comparing their MVTRs in contact with the water surface with those when not in contact with the water surface. Results Group 1 demonstrated the highest MVTR, followed by groups 2, 4, 3 and 5 under conditions simulating contact of the dressings with normal skin at the following temperatures and humidities: 20℃/30%, 20℃/60%, 20℃/90%, 37℃/30%, 37℃/60% and 37℃/90%. When the relative humidity (RH) increased, the MVTRs decreased. The MVTRs differed significantly among different dressings and RHs: At high temperature (37℃) and high humidity (90%), the MVTR of the transparent dressings in group 2 was higher than that of group 1 (P 〈0.01). The reactive MVTR was highest in group 2 (10.2-16.3 times 〉MVTR) while that of group 4 was second highest (2.6-9.6 times 〉MVTR). Conclusions RH and temperature had significant effects on the MVTRs of different dressings. The IV3000 transparent dressing used in group 2 was as effective as ordinary gauze. These results suggest that increased infection rates due to low MVTRs might not be a problem. The clinical implications of these observations for catheter-related infections need to be further investigated in multicenter studies.展开更多
Background:Nowadays,a wide range of wound dressings is already commercially available.The selection of the dressing is of paramount importance as inappropriate wound management and dressing selection can delay the wou...Background:Nowadays,a wide range of wound dressings is already commercially available.The selection of the dressing is of paramount importance as inappropriate wound management and dressing selection can delay the wound healing process.Not only can this be distressing for the patient,but it can also contribute to complications such as maceration and subsequent infection.Many researchers are targeting the design of dressings with superior properties over existing commercial dressings.However,reported results in the state-of-the-art are rarely benchmarked against commercial dressings.The aim of this study was to determine several characteristics of a large variety of the most frequently used commercial wound dressings,providing an overview for both practitioners and researchers.Methods:For this comparative study,11 frequently used commercial wound dressings were selected,representing the different types.The morphology was studied using scanning electron microscopy.The dressings were characterized in terms of swelling capacity(water,phosphate buffered saline and simulated wound fluid),moisture vapour transmission rate(MVTR)and moisture uptake capacity(via dynamic vapour sorption)as well as mechanical properties using tensile testing and texturometry.Results:The selected dressings showed distinctive morphological differences(fibrous,porous and/or gel)which was reflected in the different properties.Indeed,the swelling capacities ranged between 1.5 and 23.2 g/g(water),2.1 and 17.6 g/g(phosphate buffered saline)or 2.9 and 20.8 g/g(simulated wound fluid).The swelling capacity of the dressings in water increased even further upon freeze-drying,due to the formation of pores.The MVTR values varied between 40 and 930 g/m^(2)/24 h.The maximal moisture uptake capacity varied between 5.8%and 105.7%at 95%relative humidity.Some commercial dressings exhibited a superior mechanical strength,due to either being hydrophobic or multi-layered.Conclusions:The present work not only offers insight into a valuable toolbox of suitable wound dressing characterization techniques,but also provides an extensive landscaping of commercial dressings along with their physico-chemical properties,obtained through reproducible experimen-tal protocols.Furthermore,it ensures appropriate benchmark values for commercial dressings in all forthcoming studies and could aid researchers with the development of novel modern wound dressings.The tested dressings either exhibited a high strength or a high swelling capacity,suggesting that there is still a strong potential in the wound dressings market for dressings that possess both.展开更多
文摘Diabetic wounds represent a significant challenge in the medical field,significantly impacting patient quality of life and imposing a heavy burden on healthcare systems.Intelligent hydrogel dressings have attracted significant attention in diabetic wound treatment due to their unique properties.This review systematically explores the three main categories of intelligent hydrogels(natural,synthetic,and composite),dissecting their composition,structure,and the mechanisms that enable their intelligent responses.The crucial roles of these dressings in maintaining a moist wound environment,efficiently absorbing exudate,and precisely delivering drugs are expounded.Moreover,their application advantages in combating bacteria and infections,regulating inflammation and immunity,promoting angiogenesis and tissue regeneration,as well as enabling real-time monitoring and personalized treatment,are explored in depth.Additionally,we discuss future research directions and the prospects for personalized precision medicine in diabetic wound care,aiming to inspire innovation and provide a comprehensive theoretical basis for the development of nextgeneration intelligent dressings.
基金supported by the National Natural Science Foundation of China(22408078,82401057,32101170)the Zhejiang Province Postdoctoral Excellence Funding Program-Special Support(ZJ2024004).
文摘Diabetic wounds(DWs)are a major complication of diabetes mellitus,characterized by a complex patho-physiological microenvironment that is associated with elevated morbidity and mortality.Conventional management strategies often fail to address the multifaceted nature of these wounds effectively.Recent advancements in understanding the mechanisms of DW healing have spurred the development of a plethora of bioactive dressings designed to interact with and modulate the DW microenvironment.These innovations have culminated in the introduction of the“microenvironment-sensitive with on-demand management”paradigm aimed at delivering precision therapy responsive to dynamic changes within DW.Despite these advancements,the current literature lacks a comprehensive review that cate-gorizes and evaluates active,passive,and on-demand approaches that address the DW microenviron-ment.Herein,we describe the unique pathogenic mechanisms and microenvironmental characteristics that distinguish DW from normal acute wounds.This review provides an extensive overview of contem-porary active and passive management strategies incorporating on-demand management principles designed for DW microenvironments.Furthermore,it addresses the principal challenges faced in this therapeutic domain and outlines the potential innovations that can enhance the efficacy and specificity of bioactive dressings.The insights presented here aim to guide further research and development in the on-demand management of DW to improve patient outcomes by aligning personalized therapy modali-ties with the pathophysiological realities of DW.
文摘BACKGROUND Pressure ulcer(PU)are prevalent among critically ill trauma patients,posing substantial risks.Bundled care strategies and silver nanoparticle dressings offer potential solutions,yet their combined effectiveness and impact on patient satisfaction remain insufficiently investigated.AIM To assess the impact of bundled care along with silver nanoparticle dressing on PUs management and family satisfaction in critically ill trauma patients.METHODS A total of 98 critically ill trauma patients with PUs in intensive care unit(ICU)were included in this study.Patients were randomly assigned to either the control group(conventional care with silver nanoparticle dressing,n=49)or the intervention group(bundled care with silver nanoparticle dressing,n=49).The PU Scale for Healing(PUSH)tool was used to monitor changes in status of pressure injuries over time.Assessments were conducted at various time points:Baseline(day 0)and subsequent assessments on day 3,day 6,day 9,and day 12.Family satisfaction was assessed using the Family Satisfaction ICU 24 ques-tionnaire.RESULTS No significant differences in baseline characteristics were observed between the two groups.In the intervention group,there were significant reductions in total PUSH scores over the assessment period.Specifically,surface area,exudate,and tissue type parameters all showed significant improvements compared to the control group.Family satisfaction with care and decision-making was notably higher in the intervention group.Overall family satisfaction was significantly better in the intervention group.CONCLUSION Bundled care in combination with silver nanoparticle dressings effectively alleviated PUs and enhances family satisfaction in critically ill trauma patients.This approach holds promise for improving PUs management in the ICU,benefiting both patients and their families.
基金Key Scientific Research Project of Universities in Henan Province(22A530005).
文摘Silver-containing dressings have gained popularity in clinical applications due to their exceptional antibacterial properties and ability to enhance wound healing.These dressings primarily exert their antibacterial effects through the utilization of silver ions or nano-silver particles.The antimicrobial property of silver ions is a result of multiple mechanisms,with the most significant being the interaction between Ag or Ag+and the bacterial cell wall,as well as the interaction between Ag+and bacterial DNA or RNA,which inhibits replication and division.Silver-containing dressings can effectively reduce inflammation in wound tissue and expedite wound healing.The antibacterial and wound-healing promoting effects of these dressings are closely associated with the controlled release rate of silver ions.Consequently,developing novel silver-containing dressings that accurately regulate this release rate has become a prominent area of research interest.With broad prospects for application in wound care,silver-containing dressings are anticipated to offer innovative solutions for addressing numerous challenges encountered in clinical wound management.
文摘Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.
基金supported by the National Natural Science Foundation of China(Nos.52203146,81925019,U1705281,and U22A20333)the Fundamental Research Funds for the Central Universities(No.20720200019)the Program for New Century Excellent Talents in University,China(No.NCET-13-0502)。
文摘Natural hydrogels have emerged as a pivotal innovation in wound care,offering a unique combination of high absorbency,biocompatibility,and versatility.However,due to the complexity of wound healing,the physiological state of the wound varies dynamically,and the mechanism of natural hydrogels that boost wound healing is still unclear.In this review,we firstly provide a comprehensive introduction to the bio-logical process of wound healing,emphasizing the critical stages and factors affecting healing.This work concludes the composition and properties of natural hydrogels,including collagen,gelatin,hyaluronic acid,chitosan,alginates,cellulose,and fibroin,highlighting their biocompatibility and biodegradability.The focus shifts to the various crosslinking strategies employed to enhance the structural integrity and functionality of natural hydrogels.This review further investigates the biological effects of natural hydro-gels in wound healing,detailing their antibacterial,antioxidant,anti-inflammatory,adhesive,and hemo-static functions.Furthermore,we propose the challenges and future perspectives of natural hydrogels in practical applications.This review offers a comprehensive overview of the current state and poten-tial future advancements in natural hydrogel dressings for wound care,highlighting their critical role in addressing complex and hard-to-heal wounds.
基金Mlnlycke Health Care for their assistance on this project
文摘The aim of this study was to evaluate the cost and effectiveness of soft silicone foam dressings (SSFD, Mepilex) on the treatment of pressure ulcers. We searched electronic databases and retrieved articles to make a systematic evaluation, and then make a cost-effectiveness analysis by decision tree model combined with data from clinical treatments. The result shows that compared with the common sterile gauze, SSFD possesses an apparent advantage. The effective ratio is 96.3% versus 77.3%, although the cost of SSFD is much higher than that of sterile gauze, Mepilex appears to be more cost-effectiveness for preventive use.
基金supported by the National Natural Science Foundation of China(Project No.51573103,No.21274094)2019 Foundation Research fostering project 21 and postdoctoral fund(2019SCU12007)from SiChuan University
文摘Bacterial infections are a major cause of chronic infections.Thus,antibacterial material is an urgent need in clinics.Antibacterial nanofibers,with expansive surface area,enable efficient incorporation of antibacterial agents.Meanwhile,structure similar to the extracellular matrix can accelerate cell growth.Electrospinning,the most widely used technique to fabricate nanofiber,is often used in many biomedical applications including drug delivery,regenerative medicine,wound healing and so on.Thus,this review provides an overview of all recently published studies on the development of electrospun antibacterial nanofibers in wound dressings and tissue me-dicinal fields.This reviewer begins with a brief introduction of electrospinning process and then discusses electrospun fibers by incorporating various types of antimicrobial agents used as in wound dressings and tissue.Finally,we finish with conclusions and further perspectives on electrospun antibacterial nanofibers as 2D biomedicine materials.
文摘Objective: To study the effect of vacuum sealing drainage combined with biological dressings on the angiogenesis and inflammatory response after diabetic foot ulcer wound grafting. Methods: Patients with diabetic foot who were treated in Sichuan Provincial People's Hospital between May 2014 and February 2017 were selected and randomly divided into vacuum drainage group and normal control group who received vacuum sealing drainage combined with biological dressings as well as conventional debridement and dressing change to deal with the wound respectively. Before treatment as well as 1 d, 3 d and 5 d after treatment, the wound tissue was collected to determine the expression of angiogenesis molecules, angiogenesis signaling pathway molecules and inflammatory response molecules. Results: 1 d, 3 d and 5 d after treatment, VEGF, VEGFR, CD105, MMP9, PI3K, AKT, cyclinD1, p38MAPK and NF-kB protein expression in wound tissue of vacuum drainage group were significantly higher than those of normal control group while COX-2, iNOS, TNF-α and IL-6 mRNA expression were significantly lower than those of normal control group. Conclusion: Vacuum sealing drainage combined with biological dressings promotes the angiogenesis and inhibits the inflammatory response after diabetic foot ulcer wound grafting.
文摘Emulsifying properties of bitter orange (Citrus aurantium) juice-olive oil salad dressings stabilized with different polysaccharides were investigated. Oil-in-water emulsions (50:50, v/v) were prepared with bitter orange juice-olive oil in the presence of various concentrations (0.1%-1.0%, w/v) of pectin or guar gum or iota-(t-)carrageenan and then these emulsions were homogenized. Emulsion activity index (EAI) and emulsion stability index (ESI) were determined spectrophotometrically by measuring time-dependent changes in turbidity. Creaming stability of emulsions was followed by visual observation of serum layer with respect to time. Microstructures of emulsions were examined by using polarized light microscopy. The addition of polysaccharides improved emulsion stability and emulsions containing higher amounts of polysaccharide were more stable against creaming. Microscopic observations showed that emulsions containing polysaccharides had small droplets as compared to that of emulsions without polysaccharides and emulsions were flocculated due to the presence of polysaccharides. Larger droplets and creaming were observed when the polysaccharide concentration was not sufficient for coverage.
文摘The hydrogel wound dressing based on polyvinyl alcohol (PVA) was prepared by the freezing-thawing cyclic method. The dehydration kinetics of prepared hydrogels was determined using the experimental method and mathematical modeling based on diffusion mechanism. The results show that the dehydration rate of PVA hydrogel wound dressing inversely depends on the hydrogel thickness as well as water content of the wound. On the other hand, the initial water content of hydrogel and the atmospheric humidity have little direct effect on the dehydration rate. The good agreement between experimental and mathematical modeling results in early stages of dehydration process shows that the predominate factor determining the dehydration of these wound dressings is diffusion.
基金the National Natural Science Foundation of China(No.22175125)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.21KJA150008)the Key Laboratory of Polymeric Materials De-sign and Synthesis for Biomedical Function,Soochow University,and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘For most traditional wound dressings,it is challenging to simultaneously eliminate bacteria and promote angiogenesis to accelerate the healing process of bacteria-infected wounds.In this work,we develop a multifunctional dressing based on bacterial cellulose(BC)deposited with a tannic acid/Cu^(2+)ion/Mg^(2+)ion(TCM)complex film.Overall,the TCM complex exhibits robust interfacial adhesion to modify BC and good photothermal properties to effectively eradicate bacteria in the wound area under near-infrared(NIR)irradiation.The individual components of the TCM complex have several advantageous features for wound healing,such as antibacterial ability and negligible cytotoxicity;in particular,the released Cu^(2+)and Mg^(2+)ions are favorable for the proliferation,migration,and tube formation of endothelial cells in vitro.The results of in vivo experiments demonstrated that with the assistance of NIR irradiation,this composite dressing is more effective than traditional gauze or pristine BC dressing in promotion of angiogenesis and collagen deposition without causing remarkable inflammation,thereby accelerating the healing process of bacteria-infected full-thickness skin wounds.This work thus provides a simple and facile way to fabricate multifunctional BC-based dressings that could be potentially used for treating infected wounds.
文摘Objective:Research on the effect of moist wound healing theory in a combination with modern new dressing treatment in patients diagnosed with pressure ulcers.Method:Selected 30 patients with pressure ulcers from our hospital,which is Shandong Tai an Municipal Hospital,from January 2019 to January 2021 were divided into experimental group(15 cases,treated with moist wound healing theory combined with modern new dressings)and control group(15 cases,applied conventional treatments).The treatment effect,time of wound edema subsidence,wound healing time,number of dressing changes,granulation tissue growth time,and diameter reduction time were compared between the two groups.Results:The total effective rate of the experimental group(93.33%,14/15)was higher than that of the control group(53.33%,8/15),P<0.05;the time to subsidence of wound edema in the experimental group was(3.11±0.22),and the time for wound healing was(12.78±0.45),the number of dressing changes(7.13±0.34)times,the growth time of granulation tissue(5.43±2.22),the diameter reduction time(6.25±3.75),compared with the control group,P<0.05.Conclusion:In the clinical treatment of patients diagnosed with pressure ulcers,the effective combination of moist healing theory and modern new dressing therapy has significant effects,whereby it speeds up the healing process of the pressure ulcers,and it is proven to be worthy to be promoted for usage.
文摘In the present work an attempt has been made to design the antibiotic drug loaded carbopolpoly( NVP) based hydrogel wound dressings for better wound care. The polymer films were characterized by SEM-EDX, AFM, FTIR, 13CNMR, TGA/DTA/DTG, DSC, and swelling studies. Besides drug release, various biomedical properties (viz. blood compatibility, mucoadhesion, oxygen permeability, water vapour transmission rate, microbial penetration, tensile strength, bursting strength, resilience, stress relaxation, and folding endurance) have also been studied. The polymer films have been observed to be biocompatible, permeable to oxygen and water vapour and have absorbed simulated wound fluid 11.37±0.31g/g of polymer film. The drug release profile followed the Case-II diffusion mechanism and release profile best fitted in Hixson-Crowell’s kinetic models. Mechanical properties results showed that the polymer film had 0.65±0.12 Nmm??2 tensile strength, 119.38±14.26% elongationand 25.49±0.72% resilience.
文摘Objective: to summarize the nursing of one case of ileostomy with peripheral irritant dermatitis. Methods: one case of ileostomy with peripheral irritant dermatitis was treated with hydrocolloid dressing, combined with colostomy powder and 3M painless skin protective membrane. Discussion: the application of wet healing theory and new dressing can promote the early healing of wound and deal with skin irritating dermatitis. The healing rate is high and the healing time is significantly shortened. Result: it can obviously relieve pain, promote skin growth and wound healing.
基金supported by the National Key Research and Development Program of China(2017YFA0303700,2018YFA0307500)Key Scientific and Technological Innovation Team of Shaanxi Province(2021TD-56)National Natural Science Foundation of China(61975159,11904279,12174302,62022066,12074306,12074303).
文摘The multi-Fano interference,which is obtained through the simultaneous acquisition of bright and dark states in different phase transitions of Eu3+:BiPO4(7:1,6:1,1:1,and 0.5:1)and Eu3+:NaYF4(1:1/4)crystals,were reported in this work.Multidressed spontaneous four-wave mixing and multidressed fluorescence(multiorder)were adopted to optimize the strong photon–phonon nested dressing effect,which results in more obvious multi-Fano interference.Firstly,the multi-Fano is produced through interference in continuous and multibound states.Secondly,five multi-Fano dips are originated from the nested five dressings(one photon and four phonons)under symmetrical splitting of 7F1 energy level.It is found that the pure H-phase(0.5:1)sample exhibits the strongest photon–phonon dressed effect(five Fano dips).Further,high-order non-Hermitian exceptional points in multi-Fano interference were investigated by adjusting the ratio of Rabi frequency to dephase rate through nested photon and phonon dressing.The experimental results are validated by theoretical simulations,which may be applied to designing optoelectronic devices such as non-Hermitian multi-Fano interferences(multichannel)router.
基金supported by the National Natural Science Foundation of China(Grant Nos. 52173147, 22105198, 51973218, 51833010)the Scientific and Technological Development Projects of Jilin Province(Grant No. 20210204136YY)。
文摘Burn wounds are destructive skin traumas typically of irregular shape and large area. Prone to infection, they require frequent dressing replacement, and painless removal of dressings from burn wounds remains a major challenge. This study focuses on the dynamic characteristics and treatment difficulty of burn wounds. Hydrogel dressings based on glycol chitosan and propionaldehyde-or benzaldehyde-terminated 4-arm poly(ethylene glycol) were designed on the basis of Schiff base cross-linking networks. The hydrogels exhibited shape-adaptability, self-healing and fast-degradation properties, which makes these hydrogels suitable for burn wounds. Salvianolic acid B(SaB)-loaded hydrogel exhibited good antioxidant properties in vitro. In a rat model of deep second-degree burn wounds, the SaB-loaded hydrogel could quickly reduce wound temperature, regulate wound oxidant microenvironment, promote angiogenesis, and accelerate wound healing. Thus, the drug-loaded hydrogel shows significant potential as a first-aid dressing for treatment of burn wounds.
基金supported by the Fundamental Research Funds for the Central Universities(No.20720230037)the National Natural Science Foundation of China(No.52273305)+2 种基金Natural Science Foundation of Fujian Province of China(No.2023J05012)State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory(Nos.2023XAKJ0103071,2023XAKJ0102061)Natural Science Foundation of Xiamen,China(No.3502Z20227010).
文摘Histopathological analysis of chronic wounds is crucial for clinicians to accurately assess wound healing progress and detect potential malignancy.However,traditional pathological tissue sections require specific staining procedures involving carcinogenic chemicals.This study proposes an interdisciplinary approach merging materials science,medicine,and artificial intelligence(AI)to develop a virtual staining technique and intelligent evaluation model based on deep learning for chronic wound tissue pathology.This innovation aims to enhance clinical diagnosis and treatment by offering personalized AI-driven therapeutic strategies.By establishing a mouse model of chronic wounds and using a series of hydrogel wound dressings,tissue pathology sections were periodically collected for manual staining and healing assessment.We focused on leveraging the pix2pix image translation framework within deep learning networks.Through CNN models implemented in Python using PyTorch,our study involves learning and feature extraction for region segmentation of pathological slides.Comparative analysis between virtual staining and manual staining results,along with healing diagnosis conclusions,aims to optimize AI models.Ultimately,this approach integrates new metrics such as image recognition,quantitative analysis,and digital diagnostics to formulate an intelligent wound assessment model,facilitating smart monitoring and personalized treatment of wounds.In blind evaluation by pathologists,minimal disparities were found between virtual and conventional histologically stained images of murine wound tissue.The evaluation used pathologists’average scores on real stained images as a benchmark.The scores for virtual stained images were 71.1%for cellular features,75.4%for tissue structures,and 77.8%for overall assessment.Metrics such as PSNR(20.265)and SSIM(0.634)demonstrated our algorithms’superior performance over existing networks.Eight pathological features such as epidermis,hair follicles,and granulation tissue can be accurately identified,and the images were found to be more faithful to the actual tissue feature distribution when compared to manually annotated data.
文摘Background Transparent dressings are commonly used to cover central venous catheter sites. However, it has been suggested that they might not allow adequate moisture vapor transmission, resulting in local moistness that promotes bacterial growth. We compared the moisture vapor transmission rates (MVTRs) of different, currently used transparent and traditional gauze dressings. We aimed to determine the MVTRs at different temperatures and humidities. Methods The dressings were used to seal 50-ml plastic centrifuge tubes containing 20 ml deionized water: Tubes in group 1 were covered with 12 layers of ordinary gauze, group 2 with IV3000, group 3 with OPSITE FLEXlGRID, group 4 with 3M HP Tegaderm, and group 5 with 3M Tegaderm. The tubes were placed upright in an artificial climate cabinet, so that the dressings were not touching the water, in order to simulate the conditions of medical dressings in contact with the skin. The average MVTRs were determined under different conditions. MVTRs were also determined with tubes from groups 2-5 laid on their sides, allowing the dressings to touch the water, so simulating contact of the dressings with sweating skin, or wounded skin with exudates. We also calculated the dressings' self-reactive abilities by comparing their MVTRs in contact with the water surface with those when not in contact with the water surface. Results Group 1 demonstrated the highest MVTR, followed by groups 2, 4, 3 and 5 under conditions simulating contact of the dressings with normal skin at the following temperatures and humidities: 20℃/30%, 20℃/60%, 20℃/90%, 37℃/30%, 37℃/60% and 37℃/90%. When the relative humidity (RH) increased, the MVTRs decreased. The MVTRs differed significantly among different dressings and RHs: At high temperature (37℃) and high humidity (90%), the MVTR of the transparent dressings in group 2 was higher than that of group 1 (P 〈0.01). The reactive MVTR was highest in group 2 (10.2-16.3 times 〉MVTR) while that of group 4 was second highest (2.6-9.6 times 〉MVTR). Conclusions RH and temperature had significant effects on the MVTRs of different dressings. The IV3000 transparent dressing used in group 2 was as effective as ordinary gauze. These results suggest that increased infection rates due to low MVTRs might not be a problem. The clinical implications of these observations for catheter-related infections need to be further investigated in multicenter studies.
基金MMwould like to thank FondsWetenschappelijk Onderzoek(FWO)for financial support(SB PhD fellow at FWO,Grant No.3SB5619)AM has also received funding from Fonds Wetenschappelijk Onderzoek(Grant No.12Z2918N).
文摘Background:Nowadays,a wide range of wound dressings is already commercially available.The selection of the dressing is of paramount importance as inappropriate wound management and dressing selection can delay the wound healing process.Not only can this be distressing for the patient,but it can also contribute to complications such as maceration and subsequent infection.Many researchers are targeting the design of dressings with superior properties over existing commercial dressings.However,reported results in the state-of-the-art are rarely benchmarked against commercial dressings.The aim of this study was to determine several characteristics of a large variety of the most frequently used commercial wound dressings,providing an overview for both practitioners and researchers.Methods:For this comparative study,11 frequently used commercial wound dressings were selected,representing the different types.The morphology was studied using scanning electron microscopy.The dressings were characterized in terms of swelling capacity(water,phosphate buffered saline and simulated wound fluid),moisture vapour transmission rate(MVTR)and moisture uptake capacity(via dynamic vapour sorption)as well as mechanical properties using tensile testing and texturometry.Results:The selected dressings showed distinctive morphological differences(fibrous,porous and/or gel)which was reflected in the different properties.Indeed,the swelling capacities ranged between 1.5 and 23.2 g/g(water),2.1 and 17.6 g/g(phosphate buffered saline)or 2.9 and 20.8 g/g(simulated wound fluid).The swelling capacity of the dressings in water increased even further upon freeze-drying,due to the formation of pores.The MVTR values varied between 40 and 930 g/m^(2)/24 h.The maximal moisture uptake capacity varied between 5.8%and 105.7%at 95%relative humidity.Some commercial dressings exhibited a superior mechanical strength,due to either being hydrophobic or multi-layered.Conclusions:The present work not only offers insight into a valuable toolbox of suitable wound dressing characterization techniques,but also provides an extensive landscaping of commercial dressings along with their physico-chemical properties,obtained through reproducible experimen-tal protocols.Furthermore,it ensures appropriate benchmark values for commercial dressings in all forthcoming studies and could aid researchers with the development of novel modern wound dressings.The tested dressings either exhibited a high strength or a high swelling capacity,suggesting that there is still a strong potential in the wound dressings market for dressings that possess both.