期刊文献+
共找到1,286篇文章
< 1 2 65 >
每页显示 20 50 100
Non-Neural 3D Nasal Reconstruction:A Sparse Landmark Algorithmic Approach for Medical Applications
1
作者 Nguyen Khac Toan Ho Nguyen Anh Tuan Nguyen Truong Thinh 《Computer Modeling in Engineering & Sciences》 2025年第5期1273-1295,共23页
This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D n... This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications. 展开更多
关键词 Nose reconstruction 3d reconstruction medical applications algorithmic reconstruction enhanced 3d model
在线阅读 下载PDF
Hybrid Framework for Structural Analysis: Integrating Topology Optimization, Adjacent Element Temperature-Driven Pre-Stress, and Greedy Algorithms
2
作者 Ibrahim T.Teke Ahmet H.Ertas 《Computers, Materials & Continua》 2025年第7期243-264,共22页
This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injecti... This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injection-molded parts.At its core,the framework employs a greedy algorithm that generates runner systems based on adjacency and shortest path principles,leading to improvements in both mechanical strength and material efficiency.The design optimization is validated through a series of rigorous experimental tests,including three-point bending and torsion tests performed on key-socket frames,ensuring that the optimized designs meet practical performance requirements.A critical innovation of the framework is the development of the Adjacent Element Temperature-Driven Prestress Algorithm(AETDPA),which refines the prediction of mechanical failure and strength fitting.This algorithm has been shown to deliver mesh-independent accuracy,thereby enhancing the reliability of simulation results across various design iterations.The framework’s adaptability is further demonstrated by its ability to adjust optimization methods based on the unique geometry of each part,thus accelerating the overall design process while ensuring struc-tural integrity.In addition to its immediate applications in injection molding,the study explores the potential extension of this framework to metal additive manufacturing,opening new avenues for its use in advanced manufacturing technologies.Numerical simulations,including finite element analysis,support the experimental findings and confirm that the optimized designs provide a balanced combination of strength,durability,and efficiency.Furthermore,the integration challenges with existing injection molding practices are addressed,underscoring the framework’s scalability and industrial relevance.Overall,this hybrid topology optimization framework offers a computationally efficient and robust solution for advanced manufacturing applications,promising significant improvements in design efficiency,cost-effectiveness,and product performance.Future work will focus on further enhancing algorithm robustness and exploring additional applications across diverse manufacturing processes. 展开更多
关键词 Plastic injection molding 3d printing three-point bending tensile test adjacent element temperature-driven pre-stress algorithm d-S-ER S-d-S-ER thermal expansion greedy algorithm
在线阅读 下载PDF
3D numerical manifold method for crack propagation in rock materials using a local tracking algorithm
3
作者 Boyi Su Tao Xu +3 位作者 Genhua Shi Michael J.Heap Xianyang Yu Guanglei Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3449-3463,共15页
The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock mater... The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials. 展开更多
关键词 3d numerical manifold method(3d NMM) Crack propagation Local tracking algorithm Brittle materials
在线阅读 下载PDF
Rock discontinuity extraction from 3D point clouds using pointwise clustering algorithm
4
作者 Xiaoyu Yi Wenxuan Wu +2 位作者 Wenkai Feng Yongjian Zhou Jiachen Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4429-4444,共16页
Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected ... Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds. 展开更多
关键词 Rock mass discontinuity 3d point clouds Pointwise clustering(PWC)algorithm Modified whale optimization algorithm(MWOA)
在线阅读 下载PDF
A novel heuristic pathfinding algorithm for 3D security modeling and vulnerability assessment
5
作者 Jun Yang Yue-Ming Hong +2 位作者 Yu-Ming Lv Hao-Ming Ma Wen-Lin Wang 《Nuclear Science and Techniques》 2025年第5期152-166,共15页
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner... Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications. 展开更多
关键词 Physical protection system 3d modeling and simulation Vulnerability assessment A^(*)Heuristic Pathfinding dijkstra algorithm
在线阅读 下载PDF
融合改进D^(*)与RRT算法的单AGV路径规划算法
6
作者 赵学健 叶昊 +2 位作者 江宇航 袁凯 孙知信 《小型微型计算机系统》 北大核心 2025年第8期1847-1860,共14页
本研究针对单自动导引车(AGV)的路径规划问题,深入剖析了现有多阶段路径规划方法的局限性,并提出了一种融合改进D^(*)与快速探索随机树(RRT)算法的路径规划算法.该算法结合了改进D^(*)算法的高效性与RRT算法的灵活性,通过动态避障策略... 本研究针对单自动导引车(AGV)的路径规划问题,深入剖析了现有多阶段路径规划方法的局限性,并提出了一种融合改进D^(*)与快速探索随机树(RRT)算法的路径规划算法.该算法结合了改进D^(*)算法的高效性与RRT算法的灵活性,通过动态避障策略和目标约束优化,显著提升了路径规划性能.引入自适应视野、步长、威胁因子及目标点采样率等参数,以适应多变环境需求.利用Rich_Moore元胞自动机方法扩展可行区域并确定最短路径,并通过高阶贝塞尔曲线平滑路径,减少转向,提高路径平滑度.实验结果证明,该算法在精度和效率上均优于传统方法,对提升AGV作业实时性和准确性,推动自动化物流系统发展具有显著意义. 展开更多
关键词 AGV 随机树算法 d^(*)算法 路径规划 智能物流
在线阅读 下载PDF
超高强度A柱加强板热冲压质量自适应MOEA/D优化
7
作者 裴宝浩 肖振 +1 位作者 周娟 于蓬 《机械设计与制造》 北大核心 2025年第9期255-259,265,共6页
为了提高超高强度A柱加强板热冲压成形质量,提出了基于自适应MOEA/D算法的冲压参数多目标优化方法。使用数值模拟法分析了超高强度A柱加强板热冲压质量问题,并针对最大减薄率和最大增厚率建立了多目标优化模型。在仿真数据基础上,使用Kr... 为了提高超高强度A柱加强板热冲压成形质量,提出了基于自适应MOEA/D算法的冲压参数多目标优化方法。使用数值模拟法分析了超高强度A柱加强板热冲压质量问题,并针对最大减薄率和最大增厚率建立了多目标优化模型。在仿真数据基础上,使用Kriging模型拟合了质量参数与工艺参数间模型。将优化变量编码为基因,从而将冲压优化问题转化为算法寻优问题。为了提高MOEA/D算法的优化能力,在算法中引入了自适应差异性惩罚方案,进而提出了基于自适应MOEA/D算法的优化方法。经生产优化,优化后产品的金相组织实现了预期变化,最大减薄率均值由17.1%减小为14.5%,最大增厚率均值由18.1%减小为15.7%,实验结果证明了自适应MOEA/D优化算法的优越性。 展开更多
关键词 超高强度 A柱加强板 冲压优化 MOEA/d算法 自适应差异性惩罚方案
在线阅读 下载PDF
基于XGBoost与改进D-S证据理论的油浸式变压器故障诊断方法
8
作者 陈辉 白雪婷 +3 位作者 吴一庆 江友华 徐非非 叶尚兴 《仪表技术》 2025年第4期72-77,81,共7页
针对油浸式变压器故障诊断中存在的油中溶解气体数据量不足及传统D-S证据理论故障诊断精度低的问题,提出了一种基于XGBoost与改进D-S证据理论的变压器故障诊断方法。通过单一气体特征衍生构建包含溶解气体含量及其比值的双结构特征集,... 针对油浸式变压器故障诊断中存在的油中溶解气体数据量不足及传统D-S证据理论故障诊断精度低的问题,提出了一种基于XGBoost与改进D-S证据理论的变压器故障诊断方法。通过单一气体特征衍生构建包含溶解气体含量及其比值的双结构特征集,并利用XGBoost算法筛选出最优故障特征子集;基于K-近邻算法计算特征模型值与待识别样本间贴近度,生成基本概率分配(BPA)函数;通过信念散度距离实现证据再分配,并采用D-S证据理论合成规则进行多源证据融合,以提高诊断准确性。实验结果表明,所提方法的故障诊断准确率达到90.21%,相较于IEC三比值法、灰色关联分析、CART、WOA-BP、GA-SVM分别提高了11.91%、10.91%、9.81%、8.71%和3.21%,显著提升了变压器故障诊断的可靠性。 展开更多
关键词 油浸式变压器 故障诊断 XGBoost算法 d-S证据理论 K-近邻算法
原文传递
基于DREAM算法的DSGE模型参数估计精度研究
9
作者 罗琦 赵胜民 《统计与决策》 CSSCI 北大核心 2024年第2期46-51,共6页
文章将人工智能算法中的DREAM算法首次应用到动态随机一般均衡模型的参数估计中,并以动态随机一般均衡模型LS(2005)为例对该算法的估计精度进行了系统分析,研究结果表明:根据待估参数随机抽样序列的箱线图来看,由DREAM算法产生的待估参... 文章将人工智能算法中的DREAM算法首次应用到动态随机一般均衡模型的参数估计中,并以动态随机一般均衡模型LS(2005)为例对该算法的估计精度进行了系统分析,研究结果表明:根据待估参数随机抽样序列的箱线图来看,由DREAM算法产生的待估参数随机抽样序列的箱体长度均比RWMH和IMH算法产生的箱体长度要长,说明由DREAM算法产生的参数估计序列的分散程度比RWMH和IMH算法要大,表明了DREAM算法遍历参数空间范围更为广泛,算法逃逸局部最优值的能力更强。另外,从箱线图中的中位数数值来看,除了5个参数以外,由DREAM算法产生的参数估计序列的中位数相比RWMH和IMH算法,与真实数据生成过程更为接近,说明由DREAM算法产生的参数估计值大部分都集中在参数的真值附近。由于DREAM算法依据IQR统计方法除去无用链,故由DREAM算法产生的参数估计序列的异常值也明显降低,而RWMH算法产生的参数估计序列的异常值尤其多。从待估参数的90%最大后验密度可信区间来看,DREAM算法产生的待估参数90%最大后验密度可信区间除了3个参数以外,其余全部包含了真值,而传统的RWMH和IMH算法分别只有7个和1个区间包含了真值,表明DREAM算法的估计不确定性远小于传统的RWMH和IMH算法。最后,根据待估参数的无效因子来看,DREAM算法产生的待估参数序列与传统的RWMH和IMH算法相比,其相关性更弱,即无效因子数值更小,这一点进一步验证了DREAM算法遍历整个参数空间的能力更强。 展开更多
关键词 dream算法 dSGE模型 估计精度
在线阅读 下载PDF
Genetic Algorithm Optimization Design of Gradient Conformal Chiral Metamaterials and 3D Printing Verifiction for Morphing Wings
10
作者 Qian Zheng Weijun Zhu +3 位作者 Quan Zhi Henglun Sun Dongsheng Li Xilun Ding 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期346-364,共19页
This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of c... This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings. 展开更多
关键词 Morphing wings Chiral metamaterials Gradient conformal design Genetic algorithm optimization 3d printing
在线阅读 下载PDF
联合K-D树和GPU并行运算的CUBE快速滤波方法
11
作者 李枭凯 王力 +2 位作者 李广云 高欣圆 靳海峰 《海洋测绘》 北大核心 2025年第2期14-18,共5页
针对多波束测深数据滤波算法的效率问题,提出了一种联合K-D树和GPU并行运算的CUBE(com-bined uncertainty bathymetry estimator,CUBE)快速滤波算法。该算法首先利用K-D树对点云数据进行高效索引,然后将滤波任务分配至GPU的流式多处理... 针对多波束测深数据滤波算法的效率问题,提出了一种联合K-D树和GPU并行运算的CUBE(com-bined uncertainty bathymetry estimator,CUBE)快速滤波算法。该算法首先利用K-D树对点云数据进行高效索引,然后将滤波任务分配至GPU的流式多处理器进行并行处理,从而显著提升了执行速度。实验部分通过比较K-D树与八叉树的索引效率,验证了K-D树在处理大规模点云数据时的优势。将本算法与串行CUBE算法及CARIS HIPS软件的CUBE模块进行对比,结果显示在亿级数据量处理中,滤波速度提高了约13.8倍。此外,本算法在保持数据真实性和去噪效果的前提下,展现了与商业软件相当的处理效率,为多波束测深数据的高效处理提供了有价值的参考。 展开更多
关键词 多波束测深 数据处理 CUBE算法 K-d GPU加速
在线阅读 下载PDF
应急情景下融合改进D^(*)Lite算法和DWA算法的无人驾驶汽车路径规划
12
作者 刘连玉 巩在武 +1 位作者 张雪 吴穹 《控制与决策》 北大核心 2025年第10期2985-2994,共10页
针对传统路径规划算法在无人驾驶应急场景中存在的环境建模失真、路径搜索效率以及安全性不足等局限,提出一种基于高精度城市电子地图的“全局-局部”耦合路径规划框架.该框架通过融合改进D^(*)Lite算法和动态窗口法(DWA),能够实现全局... 针对传统路径规划算法在无人驾驶应急场景中存在的环境建模失真、路径搜索效率以及安全性不足等局限,提出一种基于高精度城市电子地图的“全局-局部”耦合路径规划框架.该框架通过融合改进D^(*)Lite算法和动态窗口法(DWA),能够实现全局路径动态优化与局部避障协同控制.在全局规划中,使用五邻域搜索策略替代八邻域搜索,可有效避免路径曲折问题;同时,结合风险系数构造多目标代价函数,能够显著降低路径累积风险值.在局部规划中,设计一种基于风险感知机制的动态评价函数,增强局部避障的实时性和安全性.仿真结果表明,与现有文献相比,所提出耦合算法在路径规划效率、路径安全性、平滑度等方面均有显著的提升.进一步地,通过交通事故规避、突发乘客需求响应等典型应急场景验证所提出算法的鲁棒性,为无人驾驶安全行驶提供了理论支持. 展开更多
关键词 无人驾驶 应急路径规划 “全局-局部”耦合算法 d^(*)Lite算法 动态窗口法
原文传递
基于D-Wave Advantage量子退火算法的90比特RSA整数分解研究
13
作者 洪春雷 裴植 王潮 《计算机学报》 北大核心 2025年第7期1733-1748,共16页
业内认为在当前量子计算攻击密码整体进展缓慢背景下,RSA整数分解进展每提升1比特都面临挑战。根据《Nature》文章报道,2019~2023年谷歌不断改进其量子芯片,但依旧不能用于密码破译。谷歌等公司近期的研究表明:尽管亚线性量子资源方法分... 业内认为在当前量子计算攻击密码整体进展缓慢背景下,RSA整数分解进展每提升1比特都面临挑战。根据《Nature》文章报道,2019~2023年谷歌不断改进其量子芯片,但依旧不能用于密码破译。谷歌等公司近期的研究表明:尽管亚线性量子资源方法分解RSA整数可以降低量子资源的消耗,但是即使“完美的量子优化算法+Babai算法”也不足以有效地分解80比特以上的RSA整数。量子退火算法凭借其独特的量子隧穿效应,可跳出传统智能优化算法极易陷入的局部极值,快速逼近全局最优解。鉴于D-Wave Advantage的量子资源已达到5000+量子比特,本文通过使用更多的量子资源,提出一种量子退火算法结合经典密码算法分解RSA整数的混合架构。通过提高最近向量问题(Closest Vector Problem,CVP)的规模,从而提升搜索用于分解80比特以上RSA整数光滑对的能力;本文使用Block Korkin-Zolotarev(BKZ)算法对CVP的格基进行约化,获得较LLL算法更优的归约基。利用更优的归约基,Babai算法可以获得更优的CVP的解。在此基础上,本文利用量子退火算法的隧穿效应进一步优化Babai算法对CVP的求解,获得较Babai算法更优的解,从而提高光滑对的搜索效率,加速RSA整数分解。最后,本文在D-Wave Advantage上首次完成量子计算分解80比特以上的RSA整数,最大分解90比特RSA整数:629367860625666765619139989=6398047085669×98368744743281,大幅度超出富士通、洛克希德马丁公司、普渡大学的实验指标。实验结果表明:研究量子智能算法和量子位数较多的量子计算机攻击密码是有意义的,未来需要重视量子隧穿推进CVP等NP难题求解的潜力,其全局寻优能力可能成为密码攻击的关键。 展开更多
关键词 RSA整数 Block Korkin-Zolotarev算法 Babai算法 最近向量问题 量子退火 d-Wave Advantage
在线阅读 下载PDF
Digital Restoration of Historical Buildings by Integrating 3D PC Reconstruction and GAN Algorithm
14
作者 Tianke Fang Zhenxing Hui +3 位作者 William P.Rey Aihua Yang Bin Liu Zhiying Xie 《Journal of Artificial Intelligence and Technology》 2024年第2期179-187,共9页
Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,... Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,the damage and destruction of buildings urgently need to be repaired due to the ancient age of historical buildings and the influence of natural environment and human factors.Therefore,an artificial intelligence repair technology based on three-dimensional(3D)point cloud(PC)reconstruction and generative adversarial networks(GANs)was proposed to improve the precision and efficiency of repair work.First,in-depth research on the principles and algorithms of 3D PC data processing and GANs should be conducted.Second,a digital restoration frameworkwas constructed by combining these two artificial intelligence technologies to achieve precise and efficient restoration of historical buildings through continuous adversarial learning processes.The experimental results showed that the errors in the restoration of palace buildings,defense walls,pagodas,altars,temples,and mausoleums were 0.17,0.12,0.13,0.11,and 0.09,respectively.The technique can significantly reduce the error while maintaining the high-precision repair effect.This technology with artificial intelligence as the core has excellent accuracy and stability in the digital restoration.It provides a new technical means for the digital restoration of historical buildings and has important practical significance for the protection of cultural heritage. 展开更多
关键词 3d PC reconstruction artificial intelligence repair GAN algorithm stereoscopic vision historical buildings
在线阅读 下载PDF
基于多种机器学习算法和D-S证据理论的滑坡风险等级预测
15
作者 王引生 陆皓磊 +2 位作者 李永强 吴红刚 邱道宏 《人民黄河》 北大核心 2025年第11期139-143,共5页
针对单一机器学习算法预测滑坡风险等级时很难保证预测结果的可靠性问题,构建一种基于多种机器学习算法和D-S证据理论的滑坡风险等级预测模型。在某地区1644个滑坡点位数据的基础上,选取与河流的距离、与道路的距离、土地利用类型、水... 针对单一机器学习算法预测滑坡风险等级时很难保证预测结果的可靠性问题,构建一种基于多种机器学习算法和D-S证据理论的滑坡风险等级预测模型。在某地区1644个滑坡点位数据的基础上,选取与河流的距离、与道路的距离、土地利用类型、水流强度指数等16个影响因子进行统计分析,采用主成分分析法对数据进行降维处理。基于D-S证据理论对支持向量机(SVM)、反向传播(BP)神经网络、径向基函数(RBF)神经网络、随机森林(RF)和极限学习机(ELM)机器学习算法进行融合,将该融合模型应用于实际滑坡风险等级评价,结果表明;融合模型的预测准确率为81.66%,5种算法均至少对2个点位的风险等级预测错误,而融合模型能够实现更精准的预测,只出现1个点位预测错误,提高了滑坡风险等级预测的准确性和可靠性。 展开更多
关键词 机器学习算法 滑坡风险等级 预测 d-S证据理论 融合模型
在线阅读 下载PDF
融合D-S证据理论与BP算法的机械设备故障诊断系统研发 被引量:1
16
作者 段浩 张方琪 《自动化与仪器仪表》 2025年第3期172-176,共5页
医疗机械设备在疾病诊断和治疗中占有重要地位。然而,传统人工诊断难以满足医疗机械设备高精密度和复杂性带来的高诊断要求。因此,研究提出一种融合邓普斯特-谢弗证据理论与反向传播算法的故障诊断策略,并将其应用于研发医疗机械设备故... 医疗机械设备在疾病诊断和治疗中占有重要地位。然而,传统人工诊断难以满足医疗机械设备高精密度和复杂性带来的高诊断要求。因此,研究提出一种融合邓普斯特-谢弗证据理论与反向传播算法的故障诊断策略,并将其应用于研发医疗机械设备故障诊断系统中。通过实验,研究确定了反向传播算法的测试函数与学习率。进一步的实验结果表明,研究研发的医疗机械设备故障诊断系统在诊断精确率、稳定性和实时性方面均优于现有系统,其平均精确率达到98.46%,平均误报率低至1.01%,平均诊断时间仅为120.2 ms,显示出优越的性能。研究不仅能够提高诊断准确性和效率,还能够通过提出的机械设备故障诊断系统在未来有效减少故障对医疗服务的影响,保障患者安全。 展开更多
关键词 医疗 机械设备 故障诊断 d-S证据理论 BP算法
原文传递
混料试验渐近D-最优设计的算法研究
17
作者 许秀钿 李俊鹏 +1 位作者 张新风 张崇岐 《数理统计与管理》 北大核心 2025年第4期650-660,共11页
寻求高效算法是最优混料试验设计所研究目标之一。然而现有的算法往往依赖于高级的数学规划求解器。本文基于D-最优等价性定理,提出了一种适用于混料试验的有效算法。同时,通过实例,验证了算法的有效性,且与已有的CO算法,MA算法,VDM算... 寻求高效算法是最优混料试验设计所研究目标之一。然而现有的算法往往依赖于高级的数学规划求解器。本文基于D-最优等价性定理,提出了一种适用于混料试验的有效算法。同时,通过实例,验证了算法的有效性,且与已有的CO算法,MA算法,VDM算法以及理论结果相比,所提算法精度高,收敛性快。 展开更多
关键词 混料试验设计 AdM算法 d-最优设计
原文传递
Advanced Brain Tumor Segmentation in Magnetic Resonance Imaging via 3D U-Net and Generalized Gaussian Mixture Model-Based Preprocessing
18
作者 Khalil Ibrahim Lairedj Zouaoui Chama +5 位作者 Amina Bagdaoui Samia Larguech Younes Menni Nidhal Becheikh Lioua Kolsi Badr M.Alshammari 《Computer Modeling in Engineering & Sciences》 2025年第8期2419-2443,共25页
Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised m... Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance. 展开更多
关键词 Magnetic resonance imaging(MRI) imaging technology GGMM EM algorithm 3d U-Net SEGMENTATION
在线阅读 下载PDF
改进RHGSO-FC算法的RGB-D图像GMM聚类分割
19
作者 郭培岩 范九伦 刘恒 《计算机工程与应用》 北大核心 2025年第2期234-246,共13页
随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利... 随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利气体溶解度优化算法(HGSO)进行改进,提出改进的亨利气体溶解度优化算法(LRHGSO),并利用基于改进亨利气体溶解度优化算法的核模糊聚类(LRHGSO-KFC)生成初始化标签。将初始化标签传入到高斯混合(GMM)聚类中,得到多个聚类结果。最后对这些聚类结果通过聚集超像素方法进行分割合并,得到最终分割结果。实验数据集采用NYU depth V2室内图像,与现有的一些分割方法:阈值分割算法、硬C-均值、模糊C-均值、高斯混合聚类、核模糊聚类、模糊子空间聚类、混沌Kbest引力搜索算法和随机亨利气体溶解度优化算法进行比较,结果表明提出的RGB-D分割算法优于其他比较的算法。 展开更多
关键词 RGB-d图像分割 核模糊聚类 亨利气体溶解度优化算法 高斯混合模型 聚集超像素
在线阅读 下载PDF
基于DREAM算法的含水层渗透系数空间变异特征识别 被引量:4
20
作者 骆乾坤 吴剑锋 +2 位作者 杨运 吴吉春 马淑芬 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期448-455,共8页
采用差分进化自适应Metropolis(DREAM)算法对描述含水层渗透系数空间变异特征的参数进行识别.利用直接傅里叶变换方法产生一组空间结构参数下的若干个渗透系数场实现,借鉴噪声遗传算法(NGA)思想,计算该组空间结构参数对应的贝叶斯后验... 采用差分进化自适应Metropolis(DREAM)算法对描述含水层渗透系数空间变异特征的参数进行识别.利用直接傅里叶变换方法产生一组空间结构参数下的若干个渗透系数场实现,借鉴噪声遗传算法(NGA)思想,计算该组空间结构参数对应的贝叶斯后验概率值,提高DREAM算法求解的效率.算例求解结果表明,DREAM算法能够有效获得含水层渗透系数空间结构参数的后验分布,并可得到对应的一系列渗透系数场,可为含水层参数空间变异性研究提供新的思路. 展开更多
关键词 渗透系数 空间变异特征 噪声遗传算法 dream
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部