This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D n...This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications.展开更多
This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injecti...This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injection-molded parts.At its core,the framework employs a greedy algorithm that generates runner systems based on adjacency and shortest path principles,leading to improvements in both mechanical strength and material efficiency.The design optimization is validated through a series of rigorous experimental tests,including three-point bending and torsion tests performed on key-socket frames,ensuring that the optimized designs meet practical performance requirements.A critical innovation of the framework is the development of the Adjacent Element Temperature-Driven Prestress Algorithm(AETDPA),which refines the prediction of mechanical failure and strength fitting.This algorithm has been shown to deliver mesh-independent accuracy,thereby enhancing the reliability of simulation results across various design iterations.The framework’s adaptability is further demonstrated by its ability to adjust optimization methods based on the unique geometry of each part,thus accelerating the overall design process while ensuring struc-tural integrity.In addition to its immediate applications in injection molding,the study explores the potential extension of this framework to metal additive manufacturing,opening new avenues for its use in advanced manufacturing technologies.Numerical simulations,including finite element analysis,support the experimental findings and confirm that the optimized designs provide a balanced combination of strength,durability,and efficiency.Furthermore,the integration challenges with existing injection molding practices are addressed,underscoring the framework’s scalability and industrial relevance.Overall,this hybrid topology optimization framework offers a computationally efficient and robust solution for advanced manufacturing applications,promising significant improvements in design efficiency,cost-effectiveness,and product performance.Future work will focus on further enhancing algorithm robustness and exploring additional applications across diverse manufacturing processes.展开更多
The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock mater...The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.展开更多
Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected ...Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds.展开更多
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner...Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.展开更多
This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of c...This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings.展开更多
Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,...Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,the damage and destruction of buildings urgently need to be repaired due to the ancient age of historical buildings and the influence of natural environment and human factors.Therefore,an artificial intelligence repair technology based on three-dimensional(3D)point cloud(PC)reconstruction and generative adversarial networks(GANs)was proposed to improve the precision and efficiency of repair work.First,in-depth research on the principles and algorithms of 3D PC data processing and GANs should be conducted.Second,a digital restoration frameworkwas constructed by combining these two artificial intelligence technologies to achieve precise and efficient restoration of historical buildings through continuous adversarial learning processes.The experimental results showed that the errors in the restoration of palace buildings,defense walls,pagodas,altars,temples,and mausoleums were 0.17,0.12,0.13,0.11,and 0.09,respectively.The technique can significantly reduce the error while maintaining the high-precision repair effect.This technology with artificial intelligence as the core has excellent accuracy and stability in the digital restoration.It provides a new technical means for the digital restoration of historical buildings and has important practical significance for the protection of cultural heritage.展开更多
Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised m...Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.展开更多
文摘This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications.
文摘This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injection-molded parts.At its core,the framework employs a greedy algorithm that generates runner systems based on adjacency and shortest path principles,leading to improvements in both mechanical strength and material efficiency.The design optimization is validated through a series of rigorous experimental tests,including three-point bending and torsion tests performed on key-socket frames,ensuring that the optimized designs meet practical performance requirements.A critical innovation of the framework is the development of the Adjacent Element Temperature-Driven Prestress Algorithm(AETDPA),which refines the prediction of mechanical failure and strength fitting.This algorithm has been shown to deliver mesh-independent accuracy,thereby enhancing the reliability of simulation results across various design iterations.The framework’s adaptability is further demonstrated by its ability to adjust optimization methods based on the unique geometry of each part,thus accelerating the overall design process while ensuring struc-tural integrity.In addition to its immediate applications in injection molding,the study explores the potential extension of this framework to metal additive manufacturing,opening new avenues for its use in advanced manufacturing technologies.Numerical simulations,including finite element analysis,support the experimental findings and confirm that the optimized designs provide a balanced combination of strength,durability,and efficiency.Furthermore,the integration challenges with existing injection molding practices are addressed,underscoring the framework’s scalability and industrial relevance.Overall,this hybrid topology optimization framework offers a computationally efficient and robust solution for advanced manufacturing applications,promising significant improvements in design efficiency,cost-effectiveness,and product performance.Future work will focus on further enhancing algorithm robustness and exploring additional applications across diverse manufacturing processes.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172312 and 52211540395)support from the Institut Universitaire de France(IUF).
文摘The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.
基金supported by the National Natural Science Foundation of China(Grant No.42407232)the Sichuan Science and Technology Program(Grant No.2024NSFSC0826).
文摘Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds.
基金supported by the fundings from 2024 Young Talents Program for Science and Technology Thinking Tanks(No.XMSB20240711041)2024 Student Research Program on Dynamic Simulation and Force-on-Force Exercise of Nuclear Security in 3D Interactive Environment Using Reinforcement Learning,Natural Science Foundation of Top Talent of SZTU(No.GDRC202407)+2 种基金Shenzhen Science and Technology Program(No.KCXFZ20240903092603005)Shenzhen Science and Technology Program(No.JCYJ20241202124703004)Shenzhen Science and Technology Program(No.KJZD20230923114117032)。
文摘Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075026 and 52192632)the Fundamental Research Funds for the Central Universities(Grant No.YWF-22-L-1119)。
文摘This paper proposes a gradient conformal design technique to modify the multi-directional stiffness characteristics of 3D printed chiral metamaterials,using various airfoil shapes.The method ensures the integrity of chiral cell nodal circles while improving load transmission efficiency and enhancing manufacturing precision for 3D printing applications.A parametric design framework,integrating finite element analysis and optimization modules,is developed to enhance the wing’s multidirectional stiffness.The optimization process demonstrates that the distribution of chiral structural ligaments and nodal circles significantly affects wing deformation.The stiffness gradient optimization results reveal a variation of over 78%in tail stiffness performance between the best and worst parameter combinations.Experimental outcomes suggest that this strategy can develop metamaterials with enhanced deformability,offering a promising approach for designing morphing wings.
基金supported by The Social Science Foundation of Fujian Province(Grant no.FJ2021B080)The 2023 Fujian Provincial Foreign Cooperation Science and Technology Plan Project(2023I0047)+3 种基金The 2022 Longyan Industry-University-Research Joint Innovation Project(2022LYF18001)The 2023 Fujian Natural Resources Science and Tech-nology Innovation Project(KY-060000-04-2023-2002)Open Project Fund of Hunan Provincial Key Laboratory for Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area(Project No:DTH Key Lab.2023-04)The Construction Science and Technology Research and Development Project of Fujian Province,China(Grant no.2022-K-85).
文摘Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,the damage and destruction of buildings urgently need to be repaired due to the ancient age of historical buildings and the influence of natural environment and human factors.Therefore,an artificial intelligence repair technology based on three-dimensional(3D)point cloud(PC)reconstruction and generative adversarial networks(GANs)was proposed to improve the precision and efficiency of repair work.First,in-depth research on the principles and algorithms of 3D PC data processing and GANs should be conducted.Second,a digital restoration frameworkwas constructed by combining these two artificial intelligence technologies to achieve precise and efficient restoration of historical buildings through continuous adversarial learning processes.The experimental results showed that the errors in the restoration of palace buildings,defense walls,pagodas,altars,temples,and mausoleums were 0.17,0.12,0.13,0.11,and 0.09,respectively.The technique can significantly reduce the error while maintaining the high-precision repair effect.This technology with artificial intelligence as the core has excellent accuracy and stability in the digital restoration.It provides a new technical means for the digital restoration of historical buildings and has important practical significance for the protection of cultural heritage.
基金Princess Nourah Bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R826),Princess Nourah Bint Abdulrahman University,Riyadh,Saudi ArabiaNorthern Border University,Saudi Arabia,for supporting this work through project number(NBU-CRP-2025-2933).
文摘Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.