期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于梅尔谱特征和改进ResNet网络的室内跌倒检测方法 被引量:1
1
作者 杨松铭 王玫 《桂林理工大学学报》 北大核心 2025年第2期251-259,共9页
为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神... 为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神经网络进行分类,提高了室内跌倒事件识别的抗噪性能。通过SimAM注意力、特征金字塔(FPN)以及动态区域感知卷积(DRConv)来改进网络结构。实验结果表明,在不同数据集下,该方法比传统识别方法性能更优。改进后的网络模型在A3FALL数据集上的查准率、召回率和F1-Score分别达到了98.43%、98.21%和98.32%;对于人类跌倒的声音识别,其F1-Score达到了96.45%,相较于其他传统网络模型都具有更好的表现。 展开更多
关键词 跌倒检测 SimAM 卷积神经网络 特征金字塔 动态区域感知卷积 梅尔频率倒谱系数(MFCC)
在线阅读 下载PDF
基于DeepSORT和改进YOLOv5的煤矿井下钻杆计数方法 被引量:5
2
作者 王向前 史策 《煤炭技术》 CAS 2024年第2期200-204,共5页
针对煤矿井下钻杆计数存在精度较差、效率较低等问题,提出一种基于DeepSORT和改进YOLOv5的煤矿井下钻杆计数方法。首先,设计DR-C3模块,提高YOLOv5网络提取特征的能力;其次,引入GAM注意力机制,减少复杂背景的干扰;然后,通过CARAFE上采样... 针对煤矿井下钻杆计数存在精度较差、效率较低等问题,提出一种基于DeepSORT和改进YOLOv5的煤矿井下钻杆计数方法。首先,设计DR-C3模块,提高YOLOv5网络提取特征的能力;其次,引入GAM注意力机制,减少复杂背景的干扰;然后,通过CARAFE上采样算子扩大感受野;最后,结合DeepSORT算法对钻杆进行实时追踪计数。实验结果表明,改进后的YOLOv5 mAP@0.5提升了2.8%;钻杆计数平均精度达99.4%,检测速度达到93帧/s,计数精度高,满足实际需求。 展开更多
关键词 钻杆计数 YOLOv5 DeepSORT drconv CARAFE GAM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部