期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice
1
作者 Sheng-Min-Jie Chen Dong-Lei Du +1 位作者 Wen-Guo Yang Sui-Xiang Gao 《Journal of the Operations Research Society of China》 2025年第1期142-160,共19页
In this work,we focus on maximizing the ratio of two monotone DR-submodular functions on the integer lattice.It is neither submodular nor supermodular.We prove that the Threshold Decrease Algorithm is a 1-e^(1-kg)-εa... In this work,we focus on maximizing the ratio of two monotone DR-submodular functions on the integer lattice.It is neither submodular nor supermodular.We prove that the Threshold Decrease Algorithm is a 1-e^(1-kg)-εapproximation ratio algorithm.Additionally,we construct the relationship between maximizing the ratio of two monotone DR-submodular functions and maximizing the difference of two monotone DR-submodular functions on the integer lattice.Based on this relationship,we combine the dichotomy technique and Threshold Decrease Algorithm to solve maximizing the difference of two monotone DR-submodular functions on the integer lattice and prove its approximation ratio is f(x)-g(x)≥1-e^(1-kg)f(X^(*))-g(X^(*)).To the best of our knowledge,before us,there was no work to focus on maximizing the ratio of two monotone DR-submodular functions on integer lattice by using the Threshold Decrease Algorithm. 展开更多
关键词 dr-submodular maximization Integer lattice Threshold decrease algorithm
原文传递
Online Weakly DR-Submodular Optimization Under Stochastic Cumulative Constraints
2
作者 Junkai Feng Ruiqi Yang +1 位作者 Yapu Zhang Zhenning Zhang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第6期1667-1673,共7页
In this paper,we study a class of online continuous optimization problems.At each round,the utility function is the sum of a weakly diminishing-returns(DR)submodular function and a concave function,certain cost associ... In this paper,we study a class of online continuous optimization problems.At each round,the utility function is the sum of a weakly diminishing-returns(DR)submodular function and a concave function,certain cost associated with the action will occur,and the problem has total limited budget.Combining the two methods,the penalty function and Frank-Wolfe strategies,we present an online method to solve the considered problem.Choosing appropriate stepsize and penalty parameters,the performance of the online algorithm is guaranteed,that is,it achieves sub-linear regret bound and certain mild constraint violation bound in expectation. 展开更多
关键词 online maximization weakly dr-submodular REGRET STOCHASTIC
原文传递
Maximizing the Differences Between a Monotone DR-Submodular Function and a Linear Function on the Integer Lattice
3
作者 Zhen-Ning Zhang Dong-Lei Du +1 位作者 Ran Ma Dan Wu 《Journal of the Operations Research Society of China》 EI CSCD 2024年第3期795-807,共13页
In this paper,we investigate the maximization of the differences between a nonnegative monotone diminishing return submodular(DR-submodular)function and a nonnegative linear function on the integer lattice.As it is al... In this paper,we investigate the maximization of the differences between a nonnegative monotone diminishing return submodular(DR-submodular)function and a nonnegative linear function on the integer lattice.As it is almost unapproximable for maximizing a submodular function without the condition of nonnegative,we provide weak(bifactor)approximation algorithms for this problem in two online settings,respectively.For the unconstrained online model,we combine the ideas of single-threshold greedy,binary search and function scaling to give an efficient algorithm with a 1/2 weak approximation ratio.For the online streaming model subject to a cardinality constraint,we provide a one-pass(3-√5)/2 weak approximation ratio streaming algorithm.Its memory complexity is(k log k/ε),and the update time for per element is(log^(2)k/ε). 展开更多
关键词 Submodular maximization dr-submodular Integer lattice Single-threshold greedy algorithm Streaming algorithm
原文传递
连续DR次模最大化问题的理论与算法综述
4
作者 剧嘉琛 杨瑞琪 +1 位作者 张真宁 堵丁柱 《中国科学:数学》 北大核心 2025年第2期501-516,共16页
收益递减(diminishing returns,DR)次模最大化问题是研究具有边际收益递减性质的函数的优化问题.在连续优化领域中,DR次模函数不仅在理论上具有深远的研究价值,而且在应用上也展现了广泛的实用意义,特别是在资源分配、广告预算优化、传... 收益递减(diminishing returns,DR)次模最大化问题是研究具有边际收益递减性质的函数的优化问题.在连续优化领域中,DR次模函数不仅在理论上具有深远的研究价值,而且在应用上也展现了广泛的实用意义,特别是在资源分配、广告预算优化、传感器网络和能量管理等实际应用场景中发挥了关键作用.本文主要阐述连续域上DR次模最大化问题的经典算法及其相关变形问题的算法,涵盖Frank-Wolfe型算法、双贪婪算法、随机算法和在线算法等,并回顾近年来有关连续DR次模最大化问题的主要研究进展,为进一步探索该领域的前沿问题提供了有益参考. 展开更多
关键词 DR次模最大化 非凸优化 近似算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部