The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-la...The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material.展开更多
This paper aims to examine the influence of gravity on a thermoelastic microelongated layer when a piezoelectric layer is above it,utilizing the theory of Lord–Shulman(L–S)and also the model of dual‐phase‐lag(DPL)...This paper aims to examine the influence of gravity on a thermoelastic microelongated layer when a piezoelectric layer is above it,utilizing the theory of Lord–Shulman(L–S)and also the model of dual‐phase‐lag(DPL).A partial differential equation was transformed into an ordinary differential equation using the normal mode analysis.Aluminum epoxy numerical computations are carried out,and the results are presented in graphical format.The L–S theory and the model of DPL are compared in the presence and absence of gravity and it is found that gravity has quite a massive influence on all the physical quantities.展开更多
Through simulating one-and two-dimensional non-Fourier heat conduction problems under different pulsed inlet conditions, this paper numerically predicts some different non-Fourier heat conduction characters arose from...Through simulating one-and two-dimensional non-Fourier heat conduction problems under different pulsed inlet conditions, this paper numerically predicts some different non-Fourier heat conduction characters arose from different pulse types and different pulse frequencies. Meanwhile, the differences among thermal wave, non-Fourier and Fourier heat conduction are also showed.展开更多
文摘The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material.
文摘This paper aims to examine the influence of gravity on a thermoelastic microelongated layer when a piezoelectric layer is above it,utilizing the theory of Lord–Shulman(L–S)and also the model of dual‐phase‐lag(DPL).A partial differential equation was transformed into an ordinary differential equation using the normal mode analysis.Aluminum epoxy numerical computations are carried out,and the results are presented in graphical format.The L–S theory and the model of DPL are compared in the presence and absence of gravity and it is found that gravity has quite a massive influence on all the physical quantities.
文摘Through simulating one-and two-dimensional non-Fourier heat conduction problems under different pulsed inlet conditions, this paper numerically predicts some different non-Fourier heat conduction characters arose from different pulse types and different pulse frequencies. Meanwhile, the differences among thermal wave, non-Fourier and Fourier heat conduction are also showed.