Double-resonance Raman(DRR)scattering in two-di-mensional(2D)materials describes the intravalley or intervalley scattering of an electron or a hole excited by incident photons.Although the presence of defects can prov...Double-resonance Raman(DRR)scattering in two-di-mensional(2D)materials describes the intravalley or intervalley scattering of an electron or a hole excited by incident photons.Although the presence of defects can provide additional momentum and influence the scat-tering process involving one or two phonons,only the idealized defects without any structural details are considered in tra-ditional DRR theory.Here,the second-order DRR spectra of WSe_(2) monolayer with different types of defects are calculated involving the combinations of acoustic and optical phonons in the vicinity of K(K')and M points of the Brillouin zone.The electronic band structures are modified due to the presence of defects,and the band unfolding method is adopted to show the bending of valence and conduction bands for the defective WSe_(2) monolayers.The associ-ated phononic band structures also exhibit different changes in phonon dispersion curves,re-sulting in different DRR spectra corresponding to the different types of defects in the WSe_(2) monolayers.For example,the existence of W vacancy in the WSe_(2) monolayer would result in downshifts in vibrational frequencies and asymmetrical broadenings in linewidths for most combination modes due to the dramatic changes in contour shape of electronic valleys at K and K'.Moreover,the scattering from K to Q is found to be forbidden for the two Se vacan-cies because of the elevation of conduction band at the Q point.Our work highlights the role of defect structures in the intervalley scattering and may provide better understanding in the underlying physics of DRR process in 2D materials.展开更多
Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz...Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers(DRAMs) to measure and suppress the low-frequency noise of a homemade current source(CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to 100 n A/√Hz at 0.001 Hz. The relative stability of CS board can reach2.2 × 10^(-8). In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer,we may realize a low-noise CS in the 0.001-1000 Hz range.展开更多
We present an investigation of double-resonance optical pumping (DROP) spectra under the condition of single-photon frequency detuning based on a cesium 6S1/2-6P3/2-8S1/2 ladder-type system with a room-temperature v...We present an investigation of double-resonance optical pumping (DROP) spectra under the condition of single-photon frequency detuning based on a cesium 6S1/2-6P3/2-8S1/2 ladder-type system with a room-temperature vapor cell. Two DROP peaks are found, and their origins are explored. One peak has a narrow linewidth due to the atomic coherence for a counterpropagating configuration; the other peak has a broad linewidth, owing to the spontaneous decay for a coprop-agating configuration. This kind of off-resonant DROP spectrum can be used to control and offset-lock a laser frequency to a transition between excited states. We apply this technique to a multiphoton cesium magneto-optical trap, which can efficiently trap atoms on both red and blue sides of the two-photon resonance.展开更多
In a Doppler-broadened ladder-type cesium atomic system (6S1/2 6P3/2-8S1/2), this paper characterizes electro- magnetically induced transparency (EIT) in two different experimental arrangements, and investigates t...In a Doppler-broadened ladder-type cesium atomic system (6S1/2 6P3/2-8S1/2), this paper characterizes electro- magnetically induced transparency (EIT) in two different experimental arrangements, and investigates the influence of the double-resonance optical-pumping (DROP) effect on EIT in both arrangements. When the probe laser is weak, DROP is explicitly suppressed. When the probe laser is moderate, population of the intermediate level (6P3/2 FI = 5) is remarkable, therefore DROP is mixed with EIT. An interesting bimodal spectrum with the broad component due to DROP and the narrow part due to EIT has been clearly observed in cesium 6S1/2 F = 4-6P3/2 F^1= 5-8S1/2 F^11 = 4 transitions.展开更多
Fast and accurate quantitative detection of ^(14)CO_(2) has impor-tant applications in many elds.The optical detection method based on the sensitive cavity ring-down spectroscopy technol-ogy has great potential.But cu...Fast and accurate quantitative detection of ^(14)CO_(2) has impor-tant applications in many elds.The optical detection method based on the sensitive cavity ring-down spectroscopy technol-ogy has great potential.But currently it has diffculties of insuffcient sensitivity and susceptibility to absorption of other isotopes/impurity molecules.We propose a stepped double-resonance spectroscopy method to excite ^(14)CO_(2) molecules to an intermediate vibrationally excited state,and use cavity ring-down spectroscopy to probe them.The two-photon process signi cantly improves the selectivity of detection.We derive the quantitative measurement capability of double-resonance absorption spectroscopy.The simulation results show that the double-resonance spectroscopy measurement is Doppler-free,thereby reducing the e ect of other molecular absorption.It is expected that this method can achieve high-selectivity detection of ^(14)CO_(2) at the sub-ppt level.展开更多
MoS_(2) monolayer, as a highly promising two-dimensional semiconducting material for electronic and optoelectronic applications, exhibits deep-ultraviolet(DUV) laser-induced anomalous lattice dynamics as revealed by R...MoS_(2) monolayer, as a highly promising two-dimensional semiconducting material for electronic and optoelectronic applications, exhibits deep-ultraviolet(DUV) laser-induced anomalous lattice dynamics as revealed by Raman spectroscopy. Remarkably, not only the Raman intensity of many second-order Raman peaks but also the intensity ratio between the first-order modes E′and A′_1 exhibits a non-monotonic behavior that depends on laser energy. Moreover, there are significant inconsistencies in the literature regarding the assignments of these second-order Raman modes. In this work, we perform a thorough exploration of the anomalous lattice dynamics and conduct a renewed assignment of the numerous double resonant Raman modes of MoS_(2) monolayer. At three laser energies(E_L= 2.33, 3.50, and 4.66 e V) spanning from the visible to the ultraviolet and further into the DUV region, the calculated double-resonance Raman spectra correlate reasonably well with the experimental ones in terms of both peak positions and relative intensities. We confirm that the P_1 peak at ~450 cm^(-1) represents the second-order longitudinal acoustic(2LA) overtone mode. Each of the P_i(i = 1, 2,..., 7) peaks has multiple contributions from two phonons with distinct q wavevectors. Our calculations further reveal that the DUV laser-induced anomalous lattice dynamics stems from the quantum interference effect among different Raman scattering channels.展开更多
In this paper, we report an interesting phenomenon when precisely adjust the tuning crystal for double-resonance of a type-II configured parametric amplifier cavity, which is later verified as a cavity-enhanced effect...In this paper, we report an interesting phenomenon when precisely adjust the tuning crystal for double-resonance of a type-II configured parametric amplifier cavity, which is later verified as a cavity-enhanced effect in optics alignment. The theoretical result indicates that an angle accuracy error within 0.09° is necessary to achieve a high contrast ratio of 100:1 for a cavity with a finesse of about 205, which is crucial but high-demanding to get a high-quality narrowband entanglement source. Meanwhile, we figure out a method to release such a high requirement and get high visibility in a moderate-accuracy alignment.展开更多
A symmetry analysis and a simple dangling bond model are presented for the VZn^- in ZnGeP2, identifying a possible Jahn-Teller distortion mechanism which could naturally explain the localization of the defect wavefunc...A symmetry analysis and a simple dangling bond model are presented for the VZn^- in ZnGeP2, identifying a possible Jahn-Teller distortion mechanism which could naturally explain the localization of the defect wavefunction on two of the nearest-neighbouring P atoms, as deduced for the electron nuclear double resonance experiments.展开更多
基金supported by the National Natural Sci-ence Foundation of China(No.22174135,No.21790352)the National Key R&D Program of China(No.2021YFA1500500,No.2016YFA0200600)+4 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)Anhui Initiative in Quantum Information Technologies(No.AHY090100)CAS Project for Young Scientists in Basic Research(No.YSBR-054)Innovation Program for Quantum Science and Technology(No.2021ZD0303301)the Fundamental Research Funds for the Central Universities.
文摘Double-resonance Raman(DRR)scattering in two-di-mensional(2D)materials describes the intravalley or intervalley scattering of an electron or a hole excited by incident photons.Although the presence of defects can provide additional momentum and influence the scat-tering process involving one or two phonons,only the idealized defects without any structural details are considered in tra-ditional DRR theory.Here,the second-order DRR spectra of WSe_(2) monolayer with different types of defects are calculated involving the combinations of acoustic and optical phonons in the vicinity of K(K')and M points of the Brillouin zone.The electronic band structures are modified due to the presence of defects,and the band unfolding method is adopted to show the bending of valence and conduction bands for the defective WSe_(2) monolayers.The associ-ated phononic band structures also exhibit different changes in phonon dispersion curves,re-sulting in different DRR spectra corresponding to the different types of defects in the WSe_(2) monolayers.For example,the existence of W vacancy in the WSe_(2) monolayer would result in downshifts in vibrational frequencies and asymmetrical broadenings in linewidths for most combination modes due to the dramatic changes in contour shape of electronic valleys at K and K'.Moreover,the scattering from K to Q is found to be forbidden for the two Se vacan-cies because of the elevation of conduction band at the Q point.Our work highlights the role of defect structures in the intervalley scattering and may provide better understanding in the underlying physics of DRR process in 2D materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174446 and 61671458)。
文摘Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers(DRAMs) to measure and suppress the low-frequency noise of a homemade current source(CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to 100 n A/√Hz at 0.001 Hz. The relative stability of CS board can reach2.2 × 10^(-8). In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer,we may realize a low-noise CS in the 0.001-1000 Hz range.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921601)the National Natural Science Foundation of China(Grant Nos.11104172,11274213,61205215,and 61227902)+2 种基金the Project for Excellent Research Teams of the National Natural Science Foundation of China(Grant No.61121064)the Research Project for Returned Abroad Scholars from Universities of Shanxi Province,China(Grant No.2012-015)the Program for Science and Technology Star of Taiyuan,Shanxi,China(Grant No.12024707)
文摘We present an investigation of double-resonance optical pumping (DROP) spectra under the condition of single-photon frequency detuning based on a cesium 6S1/2-6P3/2-8S1/2 ladder-type system with a room-temperature vapor cell. Two DROP peaks are found, and their origins are explored. One peak has a narrow linewidth due to the atomic coherence for a counterpropagating configuration; the other peak has a broad linewidth, owing to the spontaneous decay for a coprop-agating configuration. This kind of off-resonant DROP spectrum can be used to control and offset-lock a laser frequency to a transition between excited states. We apply this technique to a multiphoton cesium magneto-optical trap, which can efficiently trap atoms on both red and blue sides of the two-photon resonance.
基金partially supported by the National Natural Science Foundation of China (Grant Nos. 61078051,60978017,10974125 and 60821004)the NCET Project from the Education Ministry of China (Grant No. NCET-07-0524)the Specialized Research Fund for the Doctoral Program of China (Grant No. 20070108003)
文摘In a Doppler-broadened ladder-type cesium atomic system (6S1/2 6P3/2-8S1/2), this paper characterizes electro- magnetically induced transparency (EIT) in two different experimental arrangements, and investigates the influence of the double-resonance optical-pumping (DROP) effect on EIT in both arrangements. When the probe laser is weak, DROP is explicitly suppressed. When the probe laser is moderate, population of the intermediate level (6P3/2 FI = 5) is remarkable, therefore DROP is mixed with EIT. An interesting bimodal spectrum with the broad component due to DROP and the narrow part due to EIT has been clearly observed in cesium 6S1/2 F = 4-6P3/2 F^1= 5-8S1/2 F^11 = 4 transitions.
基金This work was jointly supported by the National Natural Science Foundation of China(No.21688102 and No.11974328)the Chinese Academy of Sci-ences(XDB21020100 and XDC07010000)An-hui Initiative in Quantum Information Technologies(AHY110000).
文摘Fast and accurate quantitative detection of ^(14)CO_(2) has impor-tant applications in many elds.The optical detection method based on the sensitive cavity ring-down spectroscopy technol-ogy has great potential.But currently it has diffculties of insuffcient sensitivity and susceptibility to absorption of other isotopes/impurity molecules.We propose a stepped double-resonance spectroscopy method to excite ^(14)CO_(2) molecules to an intermediate vibrationally excited state,and use cavity ring-down spectroscopy to probe them.The two-photon process signi cantly improves the selectivity of detection.We derive the quantitative measurement capability of double-resonance absorption spectroscopy.The simulation results show that the double-resonance spectroscopy measurement is Doppler-free,thereby reducing the e ect of other molecular absorption.It is expected that this method can achieve high-selectivity detection of ^(14)CO_(2) at the sub-ppt level.
基金Project supported by the Strategic Priority Research Program of CAS (Grant No. XDB0460000)the National Natural Science Foundation of China (Grant Nos. 12404213, 52031014, and 51702146)the National Key Research and Development Program of China (Grant No. 2022YFA1203900)。
文摘MoS_(2) monolayer, as a highly promising two-dimensional semiconducting material for electronic and optoelectronic applications, exhibits deep-ultraviolet(DUV) laser-induced anomalous lattice dynamics as revealed by Raman spectroscopy. Remarkably, not only the Raman intensity of many second-order Raman peaks but also the intensity ratio between the first-order modes E′and A′_1 exhibits a non-monotonic behavior that depends on laser energy. Moreover, there are significant inconsistencies in the literature regarding the assignments of these second-order Raman modes. In this work, we perform a thorough exploration of the anomalous lattice dynamics and conduct a renewed assignment of the numerous double resonant Raman modes of MoS_(2) monolayer. At three laser energies(E_L= 2.33, 3.50, and 4.66 e V) spanning from the visible to the ultraviolet and further into the DUV region, the calculated double-resonance Raman spectra correlate reasonably well with the experimental ones in terms of both peak positions and relative intensities. We confirm that the P_1 peak at ~450 cm^(-1) represents the second-order longitudinal acoustic(2LA) overtone mode. Each of the P_i(i = 1, 2,..., 7) peaks has multiple contributions from two phonons with distinct q wavevectors. Our calculations further reveal that the DUV laser-induced anomalous lattice dynamics stems from the quantum interference effect among different Raman scattering channels.
基金supported by the Science Foundation of the Chinese Academy of Sciencesthe National Fundamental Research Program of China (Grant No. 2011CB921300)the National Natural Science Foundation of China
文摘In this paper, we report an interesting phenomenon when precisely adjust the tuning crystal for double-resonance of a type-II configured parametric amplifier cavity, which is later verified as a cavity-enhanced effect in optics alignment. The theoretical result indicates that an angle accuracy error within 0.09° is necessary to achieve a high contrast ratio of 100:1 for a cavity with a finesse of about 205, which is crucial but high-demanding to get a high-quality narrowband entanglement source. Meanwhile, we figure out a method to release such a high requirement and get high visibility in a moderate-accuracy alignment.
基金Supported by the National Natural Science Foundation of China Grant No 10604040, SRF for ROCS, SEM, the YSRF of Shanxi Grant No 2007021002, the Oversea Science Foundation of Shanxi, the Air Force Office of Scientific Research (USA) under Grant No F49620-03-1-0010
文摘A symmetry analysis and a simple dangling bond model are presented for the VZn^- in ZnGeP2, identifying a possible Jahn-Teller distortion mechanism which could naturally explain the localization of the defect wavefunction on two of the nearest-neighbouring P atoms, as deduced for the electron nuclear double resonance experiments.