动态超表面天线(dynamic metasurface antenna,DMA)已成为空基平台波达方向(direction of ar rival,DOA)估计的优选技术,但其性能易受平台抖动的影响。针对空基平台在DOA估计中面临的角度随机抖动问题,提出了一种基于DMA异构码本循环卡...动态超表面天线(dynamic metasurface antenna,DMA)已成为空基平台波达方向(direction of ar rival,DOA)估计的优选技术,但其性能易受平台抖动的影响。针对空基平台在DOA估计中面临的角度随机抖动问题,提出了一种基于DMA异构码本循环卡尔曼滤波的抗抖动DOA估计算法。首先,针对角度随机抖动导致的接收端数据非线性问题,提出了一种非线性误差分离方案,将接收数据中的抖动误差转化为易于分离的线性分量,便于后续的抖动分量滤除。其次,为了使接收数据与卡尔曼滤波算法相匹配,提出了一种异构码本循环方案,通过在长时间尺度上构建相同的DMA码字,以支持卡尔曼滤波算法利用累积的时间信息来识别和滤除抖动误差。最后,卡尔曼滤波处理后的数据通过原子范数方法恢复出稀疏信号,并采用基于Han kel矩阵分解的多信号分类(multiple signal classification,MUSIC)方法进行空间谱估计。仿真结果证实,在相同信噪比(signal-to-noise ratio,SNR)条件下,所提方案相较于传统的多次估计平均方案,估计精度提升了48%,估计结果更接近无抖动的理想状态。展开更多
文摘动态超表面天线(dynamic metasurface antenna,DMA)已成为空基平台波达方向(direction of ar rival,DOA)估计的优选技术,但其性能易受平台抖动的影响。针对空基平台在DOA估计中面临的角度随机抖动问题,提出了一种基于DMA异构码本循环卡尔曼滤波的抗抖动DOA估计算法。首先,针对角度随机抖动导致的接收端数据非线性问题,提出了一种非线性误差分离方案,将接收数据中的抖动误差转化为易于分离的线性分量,便于后续的抖动分量滤除。其次,为了使接收数据与卡尔曼滤波算法相匹配,提出了一种异构码本循环方案,通过在长时间尺度上构建相同的DMA码字,以支持卡尔曼滤波算法利用累积的时间信息来识别和滤除抖动误差。最后,卡尔曼滤波处理后的数据通过原子范数方法恢复出稀疏信号,并采用基于Han kel矩阵分解的多信号分类(multiple signal classification,MUSIC)方法进行空间谱估计。仿真结果证实,在相同信噪比(signal-to-noise ratio,SNR)条件下,所提方案相较于传统的多次估计平均方案,估计精度提升了48%,估计结果更接近无抖动的理想状态。