Background: Missions organized by international societies and humanitarian organizations play a significant role in saving many patients’ lives and improving their quality of life, despite the surrounding frustrating...Background: Missions organized by international societies and humanitarian organizations play a significant role in saving many patients’ lives and improving their quality of life, despite the surrounding frustrating conditions. Methods: A team of plastic surgery volunteers was sent to Yemen by the KSHARC. Results: A successful mission was performed on 62 patients who underwent surgery, with more than 900 patients examined and receiving appropriate medications. Conclusion: Missions in disaster-affected areas are of great importance. The role of missions and humanitarian organizations should be empowered.展开更多
Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed o...Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.展开更多
The Emerging Markets and Developing Countries Forum on Bridging the AI Divide and Opening Ceremony of AIM Global CoE were held on July 27 in Minhang district,Shanghai.The event was hosted by AIM Global CoE,and co-orga...The Emerging Markets and Developing Countries Forum on Bridging the AI Divide and Opening Ceremony of AIM Global CoE were held on July 27 in Minhang district,Shanghai.The event was hosted by AIM Global CoE,and co-organized by Shanghai Artificial Intelligence Research Institute(SAIRI),Shanghai Technology Innovation Center,Shanghai Grand Neobay Investment Development Group,and Organizing Committee of AI Journey Conference.Asian Association of Business Incubation(AABI)and SAIRI served as the international partners.展开更多
The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading ar...The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading are superimposed on Type Ⅰ cyclic loading. Meanwhile, the sequence of the Type Ⅲ/Ⅳ cyclic and creep loading varies with mission. This work performed load spectrum test with this characteristic on the Ni-based alloy FGH96. Then a life prediction method was developed based on the Chaboche fatigue damage accumulation model and a modified time fraction model. Creep followed by Fatigue (C-F) test was carried out to reveal the creep-fatigue interaction and calibrate parameters. The results show that most test results fall within the 2-fold deviation band. The sequence of creep-fatigue loading within the load spectrum exhibited a limited effect on life. Finally, simplified methods were developed to improve analysis efficiency, and cases where simplified methods could replace the proposed method were discussed.展开更多
As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the glo...As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the global digital divide.We used multi-scale and network analysis methods to depict the distribution pattern,network structure and spatio-temporal evolution of global submarine cables at the national and landing point scales,in order to analyze the current situation,challenges and main directions of global digital divide governance.Results show that:(1)spatial distribution of global submarine cables is unbalanced,the United States and Europe are the concentrated distribution areas of submarine cables and global information flow centers;(2)core connections of the global submarine cable network are only composed of a tiny minority of countries or regions or landing points,and have strong geographical proximity and clustered-type characteristic,noting that multitudinous landing points of developed countries are at the semi-periphery or even periphery of the network;(3)submarine cables can alleviate the global digital divide through the three paths of infrastructure universalization,digital ecosystem reconstruction and economic empowerment,and the global digital divide governance still faces the dilemma of the differences in digital strategy development and the lack of a governance system.However,due to the increasingly important position of cities in developing countries in the international communication pattern,the global digital divide problem is being alleviated.展开更多
The lunar magma ocean hypothesis suggests that the primordial KREEP(an acronym of potassium(K),rare earth element(REE),and phosphorus(P))was the final product of fractional crystallization.However,the primordial KREEP...The lunar magma ocean hypothesis suggests that the primordial KREEP(an acronym of potassium(K),rare earth element(REE),and phosphorus(P))was the final product of fractional crystallization.However,the primordial KREEP(a.k.a.urKREEP)has never been identified in previous lunar samples or meteorites.The Moon is the focus of many countries’and agencies’space exploration plans,and with the advancement of technology,crewed missions have been proposed.We propose two candidate landing sites,located respectively in the northwest(9.5°W,0.9°S)and southeast(11.1°W,6.2°S)of Lalande crater(8.6°W,4.5°S),for future crewed missions,with the primary goal of sampling the speculated urKREEP.Both sites are situated on the Th-(a critical marker of KREEP)and silica-rich Lalande ejecta in the Mare Insularum and Mare Nubium,respectively.Their geolocations at the low latitude on the lunar nearside,the flat surface,and the low rock abundance suggest the sites are safe for landing and meet the needs of real-time Earth-Moon communication.The astronauts could perform many extravehicular activities,such as collecting KREEP-rich samples,screening clast samples,and drilling regolith cores,to gather a variety of samples,such as Lalande ejecta,basalts,Copernicus ejecta,and regolith.The returned samples are valuable to explore the speculated urKREEP,to reveal the relationship between heat-producing elements and volcanism,to refine the lunar cratering chronology function,and to investigate volatiles in the regolith.展开更多
Objectives This study aimed to examine the role of the hidden curriculum in transmitting the educational mission and its impacts on nursing students’professional socialization.Methods This constructivist grounded the...Objectives This study aimed to examine the role of the hidden curriculum in transmitting the educational mission and its impacts on nursing students’professional socialization.Methods This constructivist grounded theory study involved twenty-six students and five faculty members from a century-old nursing school in Macao.Semi-structured interviews examined the factors influencing nursing students’choice of a specific nursing school and their general learning experiences in nursing studies.Open and focused coding was employed to develop categories and concepts that capture the nuances of how the hidden curriculum influences students’personal experiences,perceptions,and values related to developing their professional identities.The data analysis was guided by the“Community of Practice”model.Results The educational mission fostered a hidden curriculum that emphasized nurturing qualities and social responsibilities,creating a family-like learning environment that positively influenced the professional socialization of nursing students.Under the core theme of“becoming a family,”two sub-themes emerged:“student-peer interactions-fostering sisterly/brotherly learning partnerships”and“student-faculty interactions–faculty’s acting as parenting instructors.”While the hidden curriculum promoted a democratic and egalitarian learning atmosphere among student-peers,it simultaneously reinforced hierarchical power dynamics among senior-junior students and student-faculty relationships,mirroring the power-based interpersonal dynamics often found in traditional Chinese families.Conclusions Explicating the educational mission can help shape a hidden curriculum that benefits nursing students’professional socialization.Faculty members should reflect on the power inequalities reproduced by the hidden curriculum and establish appropriate boundaries in student-faculty relationships.展开更多
As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mis...As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mission planning,where path planning and target assignment are tightly coupled.In this paper,we focus on UAV mission planning under carrier delivery mode(e.g.,by aircraft carrier,ground vehicle,or transport aircraft) and design a three-layer hierarchical solution framework.In the first layer,we simultaneously determine delivery points and target set division by clustering.To address the safety concerns of radar risk and UAV endurance,an improved density peak clustering algorithm is developed by constraint fusio n.In the second layer,mission planning within each cluster is viewed as a coope rative multiple-task assignment problem.A hybrid heuristic algorithm that integrates a voting-based heuristic solution generation strategy(VHSG) and a stochastic variable neighborhood search(SVNS),called VHSG-SVNS,is proposed for rapid solution.Based on the results of the first two layers,the third layer transforms carrier path planning into a multiple-vehicle routing problem with time window.The cost between any two nodes is calculated by the A~* algorithm,and the genetic algorithm is then implemented to determine the global route.Finally,a practical mission scenario containing 200 targets is used to validate the effectiveness of the designed framework,where three layers cooperate well with each other to generate satisfactory combat scheduling.Comparisons are made in each layer to highlight optimum-seeking capability and efficiency of the proposed algorithms.Works done in this paper provide a simple but efficient solution framework for cross-platform cooperative mission planning problems,and can be potentially extended to other applications such as post-disaster search and rescue,forest surveillance and firefighting,logistics pick and delivery,etc.展开更多
The Solar Close Observations and Proximity Experiments(SCOPE)mission will send a spacecraft into the solar atmosphere at a low altitude of just 5 R☉from the solar center.It aims to elucidate the mechanisms behind sol...The Solar Close Observations and Proximity Experiments(SCOPE)mission will send a spacecraft into the solar atmosphere at a low altitude of just 5 R☉from the solar center.It aims to elucidate the mechanisms behind solar eruptions and coronal heating,and to directly measure the coronal magnetic field.The mission will perform in situ measurements of the current sheet between coronal mass ejections and their associated solar flares,and energetic particles produced by either reconnection or fast-mode shocks driven by coronal mass ejections.This will help to resolve the nature of reconnections in current sheets,and energetic particle acceleration regions.To investigate coronal heating,the mission will observe nano-flares on scales smaller than 70 km in the solar corona and regions smaller than 40 km in the photosphere,where magnetohydrodynamic waves originate.To study solar wind acceleration mechanisms,the mission will also track the process of ion charge-state freezing in the solar wind.A key achievement will be the observation of the coronal magnetic field at unprecedented proximity to the solar photosphere.The polar regions will also be observed at close range,and the inner edge of the solar system dust disk may be identified for the first time.This work presents the detailed background,science,and mission concept of SCOPE and discusses how we aim to address the questions mentioned above.展开更多
Drainage divide migration refers to the shifting boundaries between adjacent drainage basins over time,driven by processes such as tectonic uplift,differential erosion,stream capture,and lithological variations.This p...Drainage divide migration refers to the shifting boundaries between adjacent drainage basins over time,driven by processes such as tectonic uplift,differential erosion,stream capture,and lithological variations.This phenomenon has a significant impact on water flow patterns and basin extents,serving as an indicator of the landscape's response to active tectonic forces.One of the key drivers of divide migration is asymmetric uplift,which causes divides to shift from areas of lower uplift to regions experiencing higher uplift.Drainage divides are inherently dynamic,evolving over time as drainage networks develop and adjust to changing conditions.This study focuses on the migration of the main drainage divide along Karιncalιda?,located between Bozdo?an and Karacasu.It employs geomorphic analyses using metrics such as the normalized steepness index(ksn),Chi(χ),and Gilbert metrics.The main divide is categorized into four segments(D1–D4),with the Karacasu Fault,situated along the mountain's north-eastern boundary,identified as the primary factor influencing divide dynamics.Secondary factors include the relatively low elevation of Karιncalιda?,uniform lithology,and consistent rainfall patterns across the region.The results indicate that the main divide is currently stable,suggesting a balance between uplift and erosion.However,higherχvalues in the D4 segment suggest that future erosion may dominate,potentially causing the divide to migrate toward the Bozdo?an Basin.These findings highlight the dynamic nature of drainage divides and the complex interplay of tectonic,erosional,and lithological processes that shape their evolution.Continued monitoring and advanced geomorphic analysis are essential for understanding the long-term stability of the divide and its response to future tectonic activity and erosional modifications.展开更多
Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable se...Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable security risks.Current spam detection techniques often struggle to keep pace with the evolving tactics employed by spammers,resulting in user dissatisfaction and potential data breaches.To address this issue,we introduce the Divide and Conquer-Generative Adversarial Network Squeeze and Excitation-Based Framework(DaC-GANSAEBF),an innovative deep-learning model designed to identify spam emails.This framework incorporates cutting-edge technologies,such as Generative Adversarial Networks(GAN),Squeeze and Excitation(SAE)modules,and a newly formulated Light Dual Attention(LDA)mechanism,which effectively utilizes both global and local attention to discern intricate patterns within textual data.This approach significantly improves efficiency and accuracy by segmenting scanned email content into smaller,independently evaluated components.The model underwent training and validation using four publicly available benchmark datasets,achieving an impressive average accuracy of 98.87%,outperforming leading methods in the field.These findings underscore the resilience and scalability of DaC-GANSAEBF,positioning it as a viable solution for contemporary spam detection systems.The framework can be easily integrated into existing technologies to enhance user security and reduce the risks associated with spam.展开更多
Background:Telehealth has emerged as a powerful tool for managing chronic diseases and mental health conditions,offering increased access to care and improved patient outcomes.However,inequities in digital connectivit...Background:Telehealth has emerged as a powerful tool for managing chronic diseases and mental health conditions,offering increased access to care and improved patient outcomes.However,inequities in digital connectivity and technological resources have created significant disparities in access to these potentially life-changing services,disproportionately impacting marginalized and minoritized communities across the globe.Methods:Data on 473,716 telehealth encounters occurring between January 1,2022,and June 30,2023 were retrieved from the electronic health records(EHR)system used by University Hospitals.These encounters were classified into three groups:attended,canceled,and no-show.Relative risk was calculated based on age,sex,and race,and a multivariate linear regression was performed with age,sex,and race as inputs,to determine their effect on the encounter outcome.Results:Our analysis identified significant differences in relative risk between demographic groups.Patients 20-39 years of age had a high relative risk of cancellation and no-show,and Black patients demonstrated the highest relative risk for cancellation and no-show.The regression analysis illustrated a statistically significant link between no-shows and patients with a cellular plan with no other internet subscription(p<0.001),smartphone ownership(p<0.001),and not having a computer(p<0.05).Conclusions:This study highlights the clinical repercussions of the digital divide,as patients relying on a mobile phone and data plan to attend telehealth visits were more likely to no-show.Current disparities in digital connectivity for historically marginalized populations heightens the risk of creating a digital underclass.There is evidence this study may be applicable in multiple countries across the world.Further research on the causes of the observed no-shows is necessary to ensure equitable delivery of digital healthcare services.展开更多
Achieving efficient adsorption and separation of C_(2)H_(2)/CO_(2)mixtures is a goal that people have always pursued to improve the situation of high energy consumption brought by traditional separation technologies i...Achieving efficient adsorption and separation of C_(2)H_(2)/CO_(2)mixtures is a goal that people have always pursued to improve the situation of high energy consumption brought by traditional separation technologies in industry today.High-nuclearity metal cluster-based MOFs with different functionalities are promising for this separation,but it is a complicated and difficult task to precisely control their structures.The strategy of pore-space partition(PSP)is a powerful way to construct this type MOFs,which has the characteristic of isostructural relationship,and can be resulted in a similar performance for them.Therefore,it is an interesting work to explore the effect of MOFs property by adjusting the size of PSP dividers.Herein,three tetranuclear Cu(Ⅱ)cluster-based MOFs(FJU-112/113/114)with dual functionalities has been successfully obtained by PSP strategy with various lengths of divider units.With the highest microporosity and unique functional site,FJU-114 realized a good improvement in the adsorption and separation performance of C_(2)H_(2)/CO_(2).The gas adsorption and lab-scale C_(2)H_(2)/CO_(2)breakthrough experiments demonstrated that FJU-114 exhibits the highest adsorption uptake of 77 cm^(3)/g for C_(2)H_(2),and shows the best separation factor of 4.2 among three MOFs.The GCMC simulation reveals that a stronger adsorption binding site of C_(2)H_(2)in FJU-114a located in the cage II near the unchanged tetranuclear copper node,combined with its high microporosity to achieve the effect of dual functionalities for the improvement performance of C_(2)H_(2)adsorption and separation.展开更多
A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically...A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically. By adjusting the parameters of the capacitors and the inductors, the power divider shows perfectly symmetric power division at 5.13 GHz, return loss up to ?24 dB, with the transmitted power being close to ?3.1 dB. The phenomena are demonstrated by simulation results. Being compact in size and low-cost, the proposed power divider is very suitable for microwave and millimeter wave integrated circuits.展开更多
The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the...The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.展开更多
Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explo...Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.展开更多
To realize equal power splitting at two arbitrary gigahertz-frequencies, this paper presents a new type of Wilkinson dual frequency power divider, consisting of three-section transmission lines and a series RLC(resist...To realize equal power splitting at two arbitrary gigahertz-frequencies, this paper presents a new type of Wilkinson dual frequency power divider, consisting of three-section transmission lines and a series RLC(resistor, inductor and capacitor)circuit. By equating the [ABCD] matrix of the proposed circuit to that of the quarter-wave impedance transformer, coupled with even/odd mode analyses, the design equations of the proposed network are derived. For verification, two dual-frequency power dividers with dual-band operating frequencies at 0.6 GHz and 3.0 GHz, and 3.8 GHz and 10 GHz respectively are designed and simulated. Simulation results show that the dual-band ratio of the proposed power divider can be as large as 5. Comparisons of the simulation results at X-band and S-band with different power dividers indicate that the proposed dual-band power divider performs better under the scenario of the upper operating frequency extending to X-band.展开更多
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (ph...The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.展开更多
Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is sti...Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is still a long process. 2G networks have developed the messaging service, which complements the already operational voice service. 2G technology has rapidly progressed to the third generation (3G), incorporating multimedia data transmission techniques. It then progressed to fourth generation (4G) and LTE (Long Term Evolution), increasing the transmission speed to improve 3G. Currently, developed countries have already moved to 5G. In developing countries, including Burundi, a member of the East African Community (ECA) where more than 80% are connected to 2G technologies, 40% are connected to the 3G network and 25% to the 4G network and are not yet connected to the 5G network and then still a process. The objective of this article is to analyze the coverage of 2G, 3G and 4G networks in Burundi. This analysis will make it possible to identify possible deficits in order to reduce the digital divide between connected urban areas and remote rural areas. Furthermore, this analysis will draw the attention of decision-makers to the need to deploy networks and coverage to allow the population to access mobile and Internet services and thus enable the digitalization of the population. Finally, this article shows the level of coverage, the digital divide and an overview of the deployment of base stations (BTS) throughout the country to promote the transformation and digital inclusion of services.展开更多
文摘Background: Missions organized by international societies and humanitarian organizations play a significant role in saving many patients’ lives and improving their quality of life, despite the surrounding frustrating conditions. Methods: A team of plastic surgery volunteers was sent to Yemen by the KSHARC. Results: A successful mission was performed on 62 patients who underwent surgery, with more than 900 patients examined and receiving appropriate medications. Conclusion: Missions in disaster-affected areas are of great importance. The role of missions and humanitarian organizations should be empowered.
基金supported by the National Key Research and Development Plan(Grant No.2021YFB3302501)the National Natural Science Foundation of China(Grant Nos.12102077,12161076,U2241263).
文摘Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.
文摘The Emerging Markets and Developing Countries Forum on Bridging the AI Divide and Opening Ceremony of AIM Global CoE were held on July 27 in Minhang district,Shanghai.The event was hosted by AIM Global CoE,and co-organized by Shanghai Artificial Intelligence Research Institute(SAIRI),Shanghai Technology Innovation Center,Shanghai Grand Neobay Investment Development Group,and Organizing Committee of AI Journey Conference.Asian Association of Business Incubation(AABI)and SAIRI served as the international partners.
基金supported by the National Science and Technology Major Project of China(No.J2019-IV-0017-0085)the National Natural Science Foundation of China(Nos.12172021,52205177)the Natural Science Foundation of Hunan Province,China(No.2021JJ40741).
文摘The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading are superimposed on Type Ⅰ cyclic loading. Meanwhile, the sequence of the Type Ⅲ/Ⅳ cyclic and creep loading varies with mission. This work performed load spectrum test with this characteristic on the Ni-based alloy FGH96. Then a life prediction method was developed based on the Chaboche fatigue damage accumulation model and a modified time fraction model. Creep followed by Fatigue (C-F) test was carried out to reveal the creep-fatigue interaction and calibrate parameters. The results show that most test results fall within the 2-fold deviation band. The sequence of creep-fatigue loading within the load spectrum exhibited a limited effect on life. Finally, simplified methods were developed to improve analysis efficiency, and cases where simplified methods could replace the proposed method were discussed.
基金National Natural Science Foundation of China,No.42371175。
文摘As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the global digital divide.We used multi-scale and network analysis methods to depict the distribution pattern,network structure and spatio-temporal evolution of global submarine cables at the national and landing point scales,in order to analyze the current situation,challenges and main directions of global digital divide governance.Results show that:(1)spatial distribution of global submarine cables is unbalanced,the United States and Europe are the concentrated distribution areas of submarine cables and global information flow centers;(2)core connections of the global submarine cable network are only composed of a tiny minority of countries or regions or landing points,and have strong geographical proximity and clustered-type characteristic,noting that multitudinous landing points of developed countries are at the semi-periphery or even periphery of the network;(3)submarine cables can alleviate the global digital divide through the three paths of infrastructure universalization,digital ecosystem reconstruction and economic empowerment,and the global digital divide governance still faces the dilemma of the differences in digital strategy development and the lack of a governance system.However,due to the increasingly important position of cities in developing countries in the international communication pattern,the global digital divide problem is being alleviated.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0503104)the National Natural Science Foundation of China(Grant Nos.42241111,62227901,and 42441826)+1 种基金the Macao Young Scholars Program(Grant No.AM201902)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant No.IGGCAS-202401).
文摘The lunar magma ocean hypothesis suggests that the primordial KREEP(an acronym of potassium(K),rare earth element(REE),and phosphorus(P))was the final product of fractional crystallization.However,the primordial KREEP(a.k.a.urKREEP)has never been identified in previous lunar samples or meteorites.The Moon is the focus of many countries’and agencies’space exploration plans,and with the advancement of technology,crewed missions have been proposed.We propose two candidate landing sites,located respectively in the northwest(9.5°W,0.9°S)and southeast(11.1°W,6.2°S)of Lalande crater(8.6°W,4.5°S),for future crewed missions,with the primary goal of sampling the speculated urKREEP.Both sites are situated on the Th-(a critical marker of KREEP)and silica-rich Lalande ejecta in the Mare Insularum and Mare Nubium,respectively.Their geolocations at the low latitude on the lunar nearside,the flat surface,and the low rock abundance suggest the sites are safe for landing and meet the needs of real-time Earth-Moon communication.The astronauts could perform many extravehicular activities,such as collecting KREEP-rich samples,screening clast samples,and drilling regolith cores,to gather a variety of samples,such as Lalande ejecta,basalts,Copernicus ejecta,and regolith.The returned samples are valuable to explore the speculated urKREEP,to reveal the relationship between heat-producing elements and volcanism,to refine the lunar cratering chronology function,and to investigate volatiles in the regolith.
基金supported by Foundation of Macao(No.G-BXX-00047-2112367-03)。
文摘Objectives This study aimed to examine the role of the hidden curriculum in transmitting the educational mission and its impacts on nursing students’professional socialization.Methods This constructivist grounded theory study involved twenty-six students and five faculty members from a century-old nursing school in Macao.Semi-structured interviews examined the factors influencing nursing students’choice of a specific nursing school and their general learning experiences in nursing studies.Open and focused coding was employed to develop categories and concepts that capture the nuances of how the hidden curriculum influences students’personal experiences,perceptions,and values related to developing their professional identities.The data analysis was guided by the“Community of Practice”model.Results The educational mission fostered a hidden curriculum that emphasized nurturing qualities and social responsibilities,creating a family-like learning environment that positively influenced the professional socialization of nursing students.Under the core theme of“becoming a family,”two sub-themes emerged:“student-peer interactions-fostering sisterly/brotherly learning partnerships”and“student-faculty interactions–faculty’s acting as parenting instructors.”While the hidden curriculum promoted a democratic and egalitarian learning atmosphere among student-peers,it simultaneously reinforced hierarchical power dynamics among senior-junior students and student-faculty relationships,mirroring the power-based interpersonal dynamics often found in traditional Chinese families.Conclusions Explicating the educational mission can help shape a hidden curriculum that benefits nursing students’professional socialization.Faculty members should reflect on the power inequalities reproduced by the hidden curriculum and establish appropriate boundaries in student-faculty relationships.
文摘As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mission planning,where path planning and target assignment are tightly coupled.In this paper,we focus on UAV mission planning under carrier delivery mode(e.g.,by aircraft carrier,ground vehicle,or transport aircraft) and design a three-layer hierarchical solution framework.In the first layer,we simultaneously determine delivery points and target set division by clustering.To address the safety concerns of radar risk and UAV endurance,an improved density peak clustering algorithm is developed by constraint fusio n.In the second layer,mission planning within each cluster is viewed as a coope rative multiple-task assignment problem.A hybrid heuristic algorithm that integrates a voting-based heuristic solution generation strategy(VHSG) and a stochastic variable neighborhood search(SVNS),called VHSG-SVNS,is proposed for rapid solution.Based on the results of the first two layers,the third layer transforms carrier path planning into a multiple-vehicle routing problem with time window.The cost between any two nodes is calculated by the A~* algorithm,and the genetic algorithm is then implemented to determine the global route.Finally,a practical mission scenario containing 200 targets is used to validate the effectiveness of the designed framework,where three layers cooperate well with each other to generate satisfactory combat scheduling.Comparisons are made in each layer to highlight optimum-seeking capability and efficiency of the proposed algorithms.Works done in this paper provide a simple but efficient solution framework for cross-platform cooperative mission planning problems,and can be potentially extended to other applications such as post-disaster search and rescue,forest surveillance and firefighting,logistics pick and delivery,etc.
基金supported by the National Key R&D Program of China (2022YFF0503800)National Natural Science Foundation of China grants (12073073, 11933009, 12273107 and U2031141)+6 种基金grants associated with the Yunnan Revitalization Talent Support Programthe Foundation of the Chinese Academy of Sciences (Light of West China Program)the Yunling Scholar Project of Yunnan Provincethe Yunnan Province Scientist Workshop of Solar Physicsthe Applied Basic Research of Yunnan Province grants (202101AT070018 and 2019FB005)supported by the National Natural Science Foundation of China grants (12273107 and U2031141)the Yunnan Key Laboratory of Solar Physics and Space Science (202205AG070009)
文摘The Solar Close Observations and Proximity Experiments(SCOPE)mission will send a spacecraft into the solar atmosphere at a low altitude of just 5 R☉from the solar center.It aims to elucidate the mechanisms behind solar eruptions and coronal heating,and to directly measure the coronal magnetic field.The mission will perform in situ measurements of the current sheet between coronal mass ejections and their associated solar flares,and energetic particles produced by either reconnection or fast-mode shocks driven by coronal mass ejections.This will help to resolve the nature of reconnections in current sheets,and energetic particle acceleration regions.To investigate coronal heating,the mission will observe nano-flares on scales smaller than 70 km in the solar corona and regions smaller than 40 km in the photosphere,where magnetohydrodynamic waves originate.To study solar wind acceleration mechanisms,the mission will also track the process of ion charge-state freezing in the solar wind.A key achievement will be the observation of the coronal magnetic field at unprecedented proximity to the solar photosphere.The polar regions will also be observed at close range,and the inner edge of the solar system dust disk may be identified for the first time.This work presents the detailed background,science,and mission concept of SCOPE and discusses how we aim to address the questions mentioned above.
文摘Drainage divide migration refers to the shifting boundaries between adjacent drainage basins over time,driven by processes such as tectonic uplift,differential erosion,stream capture,and lithological variations.This phenomenon has a significant impact on water flow patterns and basin extents,serving as an indicator of the landscape's response to active tectonic forces.One of the key drivers of divide migration is asymmetric uplift,which causes divides to shift from areas of lower uplift to regions experiencing higher uplift.Drainage divides are inherently dynamic,evolving over time as drainage networks develop and adjust to changing conditions.This study focuses on the migration of the main drainage divide along Karιncalιda?,located between Bozdo?an and Karacasu.It employs geomorphic analyses using metrics such as the normalized steepness index(ksn),Chi(χ),and Gilbert metrics.The main divide is categorized into four segments(D1–D4),with the Karacasu Fault,situated along the mountain's north-eastern boundary,identified as the primary factor influencing divide dynamics.Secondary factors include the relatively low elevation of Karιncalιda?,uniform lithology,and consistent rainfall patterns across the region.The results indicate that the main divide is currently stable,suggesting a balance between uplift and erosion.However,higherχvalues in the D4 segment suggest that future erosion may dominate,potentially causing the divide to migrate toward the Bozdo?an Basin.These findings highlight the dynamic nature of drainage divides and the complex interplay of tectonic,erosional,and lithological processes that shape their evolution.Continued monitoring and advanced geomorphic analysis are essential for understanding the long-term stability of the divide and its response to future tectonic activity and erosional modifications.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia under Grant No.(GPIP:71-829-2024).
文摘Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable security risks.Current spam detection techniques often struggle to keep pace with the evolving tactics employed by spammers,resulting in user dissatisfaction and potential data breaches.To address this issue,we introduce the Divide and Conquer-Generative Adversarial Network Squeeze and Excitation-Based Framework(DaC-GANSAEBF),an innovative deep-learning model designed to identify spam emails.This framework incorporates cutting-edge technologies,such as Generative Adversarial Networks(GAN),Squeeze and Excitation(SAE)modules,and a newly formulated Light Dual Attention(LDA)mechanism,which effectively utilizes both global and local attention to discern intricate patterns within textual data.This approach significantly improves efficiency and accuracy by segmenting scanned email content into smaller,independently evaluated components.The model underwent training and validation using four publicly available benchmark datasets,achieving an impressive average accuracy of 98.87%,outperforming leading methods in the field.These findings underscore the resilience and scalability of DaC-GANSAEBF,positioning it as a viable solution for contemporary spam detection systems.The framework can be easily integrated into existing technologies to enhance user security and reduce the risks associated with spam.
文摘Background:Telehealth has emerged as a powerful tool for managing chronic diseases and mental health conditions,offering increased access to care and improved patient outcomes.However,inequities in digital connectivity and technological resources have created significant disparities in access to these potentially life-changing services,disproportionately impacting marginalized and minoritized communities across the globe.Methods:Data on 473,716 telehealth encounters occurring between January 1,2022,and June 30,2023 were retrieved from the electronic health records(EHR)system used by University Hospitals.These encounters were classified into three groups:attended,canceled,and no-show.Relative risk was calculated based on age,sex,and race,and a multivariate linear regression was performed with age,sex,and race as inputs,to determine their effect on the encounter outcome.Results:Our analysis identified significant differences in relative risk between demographic groups.Patients 20-39 years of age had a high relative risk of cancellation and no-show,and Black patients demonstrated the highest relative risk for cancellation and no-show.The regression analysis illustrated a statistically significant link between no-shows and patients with a cellular plan with no other internet subscription(p<0.001),smartphone ownership(p<0.001),and not having a computer(p<0.05).Conclusions:This study highlights the clinical repercussions of the digital divide,as patients relying on a mobile phone and data plan to attend telehealth visits were more likely to no-show.Current disparities in digital connectivity for historically marginalized populations heightens the risk of creating a digital underclass.There is evidence this study may be applicable in multiple countries across the world.Further research on the causes of the observed no-shows is necessary to ensure equitable delivery of digital healthcare services.
基金financially supported by the National Natural Science Foundation of China(Nos.21975044,21971038,21922810 and 22271046)the Fujian Provincial Department of Science and Technology(Nos.2023J01355,2023J011106 and 2022R1022001).
文摘Achieving efficient adsorption and separation of C_(2)H_(2)/CO_(2)mixtures is a goal that people have always pursued to improve the situation of high energy consumption brought by traditional separation technologies in industry today.High-nuclearity metal cluster-based MOFs with different functionalities are promising for this separation,but it is a complicated and difficult task to precisely control their structures.The strategy of pore-space partition(PSP)is a powerful way to construct this type MOFs,which has the characteristic of isostructural relationship,and can be resulted in a similar performance for them.Therefore,it is an interesting work to explore the effect of MOFs property by adjusting the size of PSP dividers.Herein,three tetranuclear Cu(Ⅱ)cluster-based MOFs(FJU-112/113/114)with dual functionalities has been successfully obtained by PSP strategy with various lengths of divider units.With the highest microporosity and unique functional site,FJU-114 realized a good improvement in the adsorption and separation performance of C_(2)H_(2)/CO_(2).The gas adsorption and lab-scale C_(2)H_(2)/CO_(2)breakthrough experiments demonstrated that FJU-114 exhibits the highest adsorption uptake of 77 cm^(3)/g for C_(2)H_(2),and shows the best separation factor of 4.2 among three MOFs.The GCMC simulation reveals that a stronger adsorption binding site of C_(2)H_(2)in FJU-114a located in the cage II near the unchanged tetranuclear copper node,combined with its high microporosity to achieve the effect of dual functionalities for the improvement performance of C_(2)H_(2)adsorption and separation.
基金Project supported by the National Natural Science Foundation of China (Nos. 60577023 and 60378037), the National Basic Research Program (973) of China (No. 2004CB719802), China Postdoctoral Science Foundation, and Education Ministry Key Laboratory of Photoelectric Information Technology Science Foundation (No. 2005-20), China
文摘A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically. By adjusting the parameters of the capacitors and the inductors, the power divider shows perfectly symmetric power division at 5.13 GHz, return loss up to ?24 dB, with the transmitted power being close to ?3.1 dB. The phenomena are demonstrated by simulation results. Being compact in size and low-cost, the proposed power divider is very suitable for microwave and millimeter wave integrated circuits.
基金supported by the National Natural Science Foundation of China(with Granted Number 72271239,grant recipient P.J.)Research on the Design Method of Reliability Qualification Test for Complex Equipment Based on Multi-Source Information Fusion.https://www.nsfc.gov.cn/.
文摘The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.
基金Supported by Consultation and Evaluation Program on Academic Divisions of the Chinese Academy of Sciences(2022-DX02-B-007)。
文摘Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.
文摘To realize equal power splitting at two arbitrary gigahertz-frequencies, this paper presents a new type of Wilkinson dual frequency power divider, consisting of three-section transmission lines and a series RLC(resistor, inductor and capacitor)circuit. By equating the [ABCD] matrix of the proposed circuit to that of the quarter-wave impedance transformer, coupled with even/odd mode analyses, the design equations of the proposed network are derived. For verification, two dual-frequency power dividers with dual-band operating frequencies at 0.6 GHz and 3.0 GHz, and 3.8 GHz and 10 GHz respectively are designed and simulated. Simulation results show that the dual-band ratio of the proposed power divider can be as large as 5. Comparisons of the simulation results at X-band and S-band with different power dividers indicate that the proposed dual-band power divider performs better under the scenario of the upper operating frequency extending to X-band.
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
文摘The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.
文摘Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is still a long process. 2G networks have developed the messaging service, which complements the already operational voice service. 2G technology has rapidly progressed to the third generation (3G), incorporating multimedia data transmission techniques. It then progressed to fourth generation (4G) and LTE (Long Term Evolution), increasing the transmission speed to improve 3G. Currently, developed countries have already moved to 5G. In developing countries, including Burundi, a member of the East African Community (ECA) where more than 80% are connected to 2G technologies, 40% are connected to the 3G network and 25% to the 4G network and are not yet connected to the 5G network and then still a process. The objective of this article is to analyze the coverage of 2G, 3G and 4G networks in Burundi. This analysis will make it possible to identify possible deficits in order to reduce the digital divide between connected urban areas and remote rural areas. Furthermore, this analysis will draw the attention of decision-makers to the need to deploy networks and coverage to allow the population to access mobile and Internet services and thus enable the digitalization of the population. Finally, this article shows the level of coverage, the digital divide and an overview of the deployment of base stations (BTS) throughout the country to promote the transformation and digital inclusion of services.