Rice blast,caused by Magnaporthe oryzae,is a fungal disease that causes devastating damage to rice production worldwide.During infection,pathogens secrete effector proteins that modulate plant immunity.Disulfide bond ...Rice blast,caused by Magnaporthe oryzae,is a fungal disease that causes devastating damage to rice production worldwide.During infection,pathogens secrete effector proteins that modulate plant immunity.Disulfide bond formation catalyzed by protein disulfide isomerases(PDI)is essential for protein folding and maturation.However,the biological function of Pdi1 in M.oryzae has not yet been characterized.In this study,we identified the endoplasmic reticulum(ER)-located protein,MoPdi1,in M.oryzae.MoPdi1 regulates conidiation,cell wall stress,and pathogenicity of M.oryzae.Furthermore,the CGHC active sites in the a and a'redox domain of MoPdi1 were essential for the biological function of MoPDI1.Further tests demonstrated that MoPdi1 was involved in the regulation of ER stress and positively regulated ER phagy.We also found that MoPdi1 interacted with MoHut1.Deletion of MoPDI1 led to the bereft of MoHut1 dimerization,which depends on the formation of disulfide bonds.In addition,MoPdi1 affected the normal secretion of the cytoplasmic effector AVR-Pia.We provided evidence that MoHut1 is important for the vegetative growth,conidiation,and pathogenicity in M.oryzae.Therefore,our findings could provide a suitable target point for designing antifungal agrochemicals against rice blast fungus.展开更多
This study investigates the electrochemical behavior of molybdenum disulfide(MoS_(2))as an anode in Li-ion batteries,focusing on the extra capacity phenomenon.Employing advanced characterization methods such as in sit...This study investigates the electrochemical behavior of molybdenum disulfide(MoS_(2))as an anode in Li-ion batteries,focusing on the extra capacity phenomenon.Employing advanced characterization methods such as in situ and ex situ X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,and transmission electron microscopy,the research unravels the complex structural and chemical evolution of MoS_(2) throughout its cycling.A key discovery is the identification of a unique Li intercalation mechanism in MoS_(2),leading to the formation of reversible Li_(2)MoS_(2) phases that contribute to the extra capacity of the MoS_(2) electrode.Density function theory calculations suggest the potential for overlithiation in MoS_(2),predicting Li5MoS_(2) as the most energetically favorable phase within the lithiation–delithiation process.Additionally,the formation of a Li-rich phase on the surface of Li_(4)MoS_(2) is considered energetically advantageous.After the first discharge,the battery system engages in two main reactions.One involves operation as a Li-sulfur battery within the carbonate electrolyte,and the other is the reversible intercalation and deintercalation of Li in Li_(2)MoS_(2).The latter reaction contributes to the extra capacity of the battery.The incorporation of reduced graphene oxide as a conductive additive in MoS_(2) electrodes notably improves their rate capability and cycling stability.展开更多
Heterostructures of organic semi-conductors and transition metal dichalcogenides(TMDs)are viable candidates for superior optoelec-tronic devices.Photoinduced inter-facial charge transfer is crucial for the performance...Heterostructures of organic semi-conductors and transition metal dichalcogenides(TMDs)are viable candidates for superior optoelec-tronic devices.Photoinduced inter-facial charge transfer is crucial for the performance efficiency of such devices,yet the underlying mecha-nism,especially the roles of optical-ly dark triplets and spatially sepa-rated charge transfer states,is poorly understood.In the present work,we obtain the struc-tures of distinct excited states and investigate how they are involved in the charge transfer process at the Pd-octaethylporphyrin(PdOEP)and WS_(2) interface in terms of their energies and couplings.The results show that electron transfer from the triplet PdOEP formed via intersystem crossing prevails over direct electron transfer from the singlet(two orders of magnitude faster).Further analysis reveals that the relatively higher rate of triplet electron transfer compared to singlet electron transfer is mainly attributed to a smaller reorganization energy,which is dominated by the out-of-plane vibrations of the organic component.The work emphasizes the important roles of the optically dark triplets in the electron transfer of the PdOEP@WS_(2) heterostructure,and provides valuable theoretical insights for further improv-ing the optoelectronic performance of TMD-based devices.展开更多
pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical p...pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical properties, hydrophilicity/hydrophobicity, signal peptide, secondary structure, coiled coil, transmembrane domains, O-glycogylation site, active site, subcellular localization, functional structural domains and three-dimensional structure were analyzed by a series of bioinformatics software. The results showed that mPDI was a hydrophobic and stable protein with 3 coiled coils, 30-glycogylation sites, 2 structural domains of thioredoxin, 2 active sites of thioredoxin, and located in rough endoplasmic reticulum. It has 512 amino acids, the theoretical pl is 4.98, and signal peptide located in 1-24AA. In the secondary structure, a-helix, random coil, extended chain is 26.37%, 53.32%, 20.31% respectively. The validation of modeling accords with the stereochemistry.展开更多
In order to prepare pyrimidine nucleoside-peptide conjugate concisely, we developed a one-pot synthetic strategy. Started from uridine, 5-S-acetyl-thiomethyl-2',3 '-di-O-isopropylidene-uridine (4) was synthesized ...In order to prepare pyrimidine nucleoside-peptide conjugate concisely, we developed a one-pot synthetic strategy. Started from uridine, 5-S-acetyl-thiomethyl-2',3 '-di-O-isopropylidene-uridine (4) was synthesized as the key intermediate in four steps. Under acidic condition, compound 4 was deprotected and reacted with PySS-R (8, 12, 15, Py = 2-pyridyl, R = amino acid or peptide) in one pot to form uridine conjugates (9, 13, 2) with disulfide bond as linker.展开更多
Molybdenum disulfide nanoflakes were synthesized by a simple hydrothermal process using sodium molybdate and thiourea as reactants at a relatively low temperature. X-ray diffraction(XRD) and transmission elec-tron mic...Molybdenum disulfide nanoflakes were synthesized by a simple hydrothermal process using sodium molybdate and thiourea as reactants at a relatively low temperature. X-ray diffraction(XRD) and transmission elec-tron microscopy(TEM) indicate that the samples have the structure of 2H-MoS2 and the morphology of nanoflakes with the average thickness around 5-10 nm. The results of electrochemical properties indicate that the morphology and size of MoS2 particles have effects on their capacity when they are used as the anode for lithium ion battery. The as-prepared MoS2 samples have high reversible discharge capacity up to 994.6 mA·h·g-1 for the MoS2-1 elec-trode and 930.1 mA·h·g-1 for the MoS2-2 electrode and show excellent cycling performances. The MoS2-1 electrode has a better cycling stability than the MoS2-2 electrode due to their difference in the uniformity of the samples.展开更多
Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whe...Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whether ROS regulate caspase-9 via direct oxidative modification. The present study aims to elucidate the molecular mechanisms by which ROS mediate caspase-9 activation. Our results show that the cellular oxidative state facilitates caspase-9 activation. Hydrogen peroxide treatment causes the activation of caspase-9 and apoptosis, and promotes an interac- tion between easpase-9 and apoptotic protease-activating factor 1 (Apaf-1) via disulfide formation. In addition, in an in vitro mitochondria-free system, the thiol-oxidant diamide promotes auto-cleavage of caspase-9 and the caspase-9/ Apaf-1 interaction by facilitating the formation of disulfide-linked complexes. Finally, a point mutation at C403 of caspase-9 impairs both H2O2-promoted caspase-9 activation and interaction with Apaf-1 through the abolition of disulfide formation. The association between cytochrome c and the C403S mutant is significantly weaker than that between cytochrome c and wild-type caspase-9, indicating that oxidative modification of caspase-9 contributes to apoptosome formation under oxidative stress. Taken together, oxidative modification of caspase-9 by ROS can medi- ate its interaction with Apaf-1, and can thus promote its auto-cleavage and activation. This mechanism may facilitate apoptosome formation and caspase-9 activation under oxidative stress.展开更多
Self-healing polymers based on dynamic crosslinkers have drawn rapidly increasing interest over the last decade.Here,a self-healable epoxy network with exchangeable disulfide bonds was synthesized by polymerizing two ...Self-healing polymers based on dynamic crosslinkers have drawn rapidly increasing interest over the last decade.Here,a self-healable epoxy network with exchangeable disulfide bonds was synthesized by polymerizing two epoxies with an aromatic amine containing a disulfide bond.The bisphenol A diglycidyl ether(DGEBA)and poly(ethylene glycol)diglycidyl ether(DER736)were used as rigid and soft components,respectively.The crosslinking densities of studied polymers decreased with the increasing amount of DER736,resulting in the lower glassy temperature and weaker mechanical strength.The dynamic covalent network character of disulfide bond and its low active energy were also investigated through stress relaxation experiments at various temperatures.The self-healing performance of healable epoxy resins with varied flexibility was measured by tensile tests.The tensile strength of a full-cut sample was restored to 84%(13 MPa)of the initial values(16 MPa)at moderate temperature.Its healed fracture strain was up to 505%.Moreover,the effect of healing time and temperature on the self-healing properties was also studied.A model was proposed to investigate the self-repairing efficiency evolution with healing time,suggesting that hydrogen bonds mainly contributed to the initial sticking or interfacial adhesion while disulfide links and chain interdiffusion assisted time dependent reformation of networks to restore the original mechanical strength.展开更多
Through using mineral oil and synthetic oil to deploy the semisynthesis base oil, modifying the surfaces of ultrafine tungsten disulfide grains by surface chemical embellishment and adsorption embellishment to make th...Through using mineral oil and synthetic oil to deploy the semisynthesis base oil, modifying the surfaces of ultrafine tungsten disulfide grains by surface chemical embellishment and adsorption embellishment to make them suspended steadily in the base oil as solid lubricating additive, and adding some function additives, the tungsten disulfide motor oil was prepared. The tribological characteristics of this kind motor oil and the well-known motor oils in our country and overseas were studied. The results show that the oil film strength of this kind of motor oil is respectively 1.06 and 1.38 times of that of shell helix ultra motor oil and great wall motor oil, and its sintering load is 1.75 and 2.33 times of that of them, and when tested under 392 N, 1 450 r/rain and 30 min, the friction coefficients of friction pairs lubricated by the tungsten disulfide motor oil decrease with the increase of time, meanwhile, the diameter of worn spot is small, and the surface of worn spot is smooth, and no obvious furrows appear. The experiments indicate that the tungsten disulfide motor oil has the better antiwear, antifriction and extreme pressure properties than the well-known motor oils.展开更多
In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfi...In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, 02 concentration, gas hourly space velocity (GHSV) and relative humidity (RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% A1203 calcined at 300 ℃ had supe- rior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2 was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2 decrease. A small amount of 02 introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.展开更多
A reversible disulfide bond-based self-healing polyurethane with triple shape memory properties was prepared by chain extending of random copolymer poly(lactide-co-caprolactone)(PCLA), hexamethylene diisocyanate (HDI)...A reversible disulfide bond-based self-healing polyurethane with triple shape memory properties was prepared by chain extending of random copolymer poly(lactide-co-caprolactone)(PCLA), hexamethylene diisocyanate (HDI), polytetrahydrofuran (PTMEG), and 4,4,-aminophenyl disulfide. The chemical structures were characterized using 1H nuclear magnetic resonance (^1H-NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). The thermal properties, selfhealing properties, triple-shape memory effect, and quantitative shape memory response were evaluated by differential scanning calorimetry (DSC), tensile tests, two-step programming process thermal mechanical experiments, and subsequent progressive thermal recovery. The self-healing mechanism and procedures were investigated using polarizing optical microscopy (POM) and an optical profiler. It was concluded that self-healing properties (up to 60%) and triple-shape memory properties around 35 and 50℃(with shape fixation ratios of 94.3% and 98.3%, shape recovery ratios of 76.6% and 85.1%, respectively) were integrated to the shape memory polyurethane. As-prepared polyurethane is expected to have potential applications in multi-shape coatings, films, and step-by-step deploying structures.展开更多
This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critica...This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.展开更多
Elastomers with outstanding strength,toughness and healing efficiency are highly promising for many emerging fields.However,it is still a challenge to integrate all these beneficial features in one elastomer.Herein,an...Elastomers with outstanding strength,toughness and healing efficiency are highly promising for many emerging fields.However,it is still a challenge to integrate all these beneficial features in one elastomer.Herein,an asymmetric alicyclic structure adjacent to aromatic disulfide was tactfully introduced into the backbone of polyurethane(PU)elastomer.Specifically,such elastomer(PU-HPS)was fabricated by polycondensing polytetramethylene ether glycol(PTMEG),isophorone diisocyanate(IPDI)and p-hydroxydiphenyl disulfide(HPS)via one-pot method.The molecular mobility and phase morphology of PU-HPS can be tuned by adjusting the HPS content.Consequently,the dynamic exchange of hydrogen and disulfide bonds in the hard segment domains can also be tailored.The optimized sample manifests outstanding tensile strength(46.4 MPa),high toughness(109.1 MJ/m^(3)),high self-healing efficiency after fracture(90.3%),complete scratch recovery(100%)and good puncture resistance.Therefore,this work provides a facile strategy for developing robust self-healing polymers.展开更多
The sol–gel method was used to synthesize a series of metal oxides-supported activated carbon fiber (ACF) and the simultaneous catalytic hydrolysis activity of carbonyl sulfide (COS)and carbon disulfide (CS2) at rela...The sol–gel method was used to synthesize a series of metal oxides-supported activated carbon fiber (ACF) and the simultaneous catalytic hydrolysis activity of carbonyl sulfide (COS)and carbon disulfide (CS2) at relatively low temperatures of 60°C was tested.The effects of preparation conditions on the catalyst properties were investigated,including the kinds and amount of metal oxides and calcination temperatures.The activity tests indicated that catalysts with 5 wt.%Ni after calcining at 400°C (Ni(5)/ACF(400)) had the best performance for the simultaneous catalytic hydrolysis of COS and CS2.The surface and structure properties of prepared ACF were characterized by scanning electron microscope-energy disperse spectroscopy (SEM-EDS),Brunauer–Emmett–Teller (BET),X-ray diffraction (XRD),carbon dioxidetemperature programmed desorption (CO2-TPD) and diffuse reflectance Fourier transform infrared reflection (DRFTIR).And the metal cation defects were researched by electron paramagnetic resonance (EPR) method.The characterization results showed that the supporting of Ni on the ACF made the ACF catalyst show alkaline and increased the specific surface area and the number of micropores,then improved catalytic hydrolysis activity.The DRFTIR results revealed that-OH species could facilitate the hydrolysis of COS and CS2;-COO and-C–O species could facilitate the oxidation of catalytic hydrolysate H2S.And the EPR results showed that high calcination temperature conditions provide more active reaction center for the COS and CS2 adsorption.展开更多
Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive ...Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive application.There are limited approaches to exploit such anti-corrosion and mechanical properties of magnesium lithium alloys.Herein,the epoxy resin powder coating with polydopamine modified molybdenum disulfide(MoS_(2)@PDA-EP powder coating with 0,0.1,0.2,0.5,1.0 wt.%loading)was well prepared by melt extrusion to investigate its anticorrosion performance and wear resistance.The results revealed that the addition of MoS_(2)@PDA enhanced the adhesion strength between coatings and alloys,wear resistance and corrosion protection of the powder coatings.Among them,the optimum was obtained by 0.2 wt.%MoS_(2)@PDA-EP powder coating which could be attributed to well dispersion and efficient adhesion with coating matrix.To conclude,MoS_(2)@PDA-EP powder coating is meaningfully beneficial for the anticorrosive and wear performance improvement of magnesium lithium alloys.展开更多
Disulfide bond-bridging strategy has been extensively utilized to construct tumor specificity-responsive aliphatic prodrug nanoparticles(PNPs) for precise cancer therapy. Yet, there is no research shedding light on th...Disulfide bond-bridging strategy has been extensively utilized to construct tumor specificity-responsive aliphatic prodrug nanoparticles(PNPs) for precise cancer therapy. Yet, there is no research shedding light on the impacts of the saturation and cis-trans configuration of aliphatic tails on the self-assembly capacity of disulfide bond-linked prodrugs and the in vivo delivery fate of PNPs. Herein, five disulfide bond-linked docetaxelfatty acid prodrugs are designed and synthesized by using stearic acid, elaidic acid, oleic acid, linoleic acid and linolenic acid as the aliphatic tails, respectively. Interestingly, the cistrans configuration of aliphatic tails significantly influences the self-assembly features of prodrugs, and elaidic acid-linked prodrug with a trans double bond show poor self-assembly capacity. Although the aliphatic tails have almost no effect on the redox-sensitive drug release and cytotoxicity, different aliphatic tails significantly influence the chemical stability of prodrugs and the colloidal stability of PNPs, thus affecting the in vivo pharmacokinetics, biodistribution and antitumor efficacy of PNPs. Our findings illustrate how aliphatic tails affect the assembly characteristic of disulfide bond-linked aliphatic prodrugs and the in vivo delivery fate of PNPs, and thus provide theoretical basis for future development of disulfide bond-bridged aliphatic prodrugs.展开更多
Molybdenum disulfide(MoS_(2))-based materials as the non-noble metal catalysts have displayed the potential capability to drive electrocatalytic hydrogen evolution reaction(HER)for green hydrogen production along with...Molybdenum disulfide(MoS_(2))-based materials as the non-noble metal catalysts have displayed the potential capability to drive electrocatalytic hydrogen evolution reaction(HER)for green hydrogen production along with their intrinsic activity,tunable electronic properties,low cost,and abundance reserves,which have attracted intensive attention as alternatives to the low-abundance and high-cost platinum-based catalysts.However,their insufficient catalytic HER activities and stability are the major challenges for them to become practically applicable.Hereby,the MoS_(2)-based electrocatalysts for HER are comprehensively reviewed to explain the fundamental science behind the manipulations of the crystal structure,microstructure,surface,and interface of MoS_(2) in order to enhance its catalytic performance through changing the electrical conductivity,the number of active sites,surface wettability,and the Gibbs free energy for hydrogen adsorption(ΔGH).Recent studies in surface/interface engineering,such as phase engineering,defect engineering,morphology design,and heterostructure construction,are analyzed to reveal the state-of-the-art strategies for designing and preparing the cost-effective and highperformance MoS_(2)-based catalysts through optimizing the charge transfer,surface-active sites,ΔGH,and surface hydrophilicity.Lastly,the perspectives,challenges,and future research directions of HER electrocatalysis are also given to facilitate the further research and development of HER catalysts.展开更多
The combination of 1,3-dichloropropene+dimethyl disulfide (1,3-D+DMDS), which forms a pre-plant soil fumigant, can provide a substitute for the environmentally unfriendly methyl bromide (MB). Three greenhouse tr...The combination of 1,3-dichloropropene+dimethyl disulfide (1,3-D+DMDS), which forms a pre-plant soil fumigant, can provide a substitute for the environmentally unfriendly methyl bromide (MB). Three greenhouse trials were performed to evaluate the root-knot nematode and soilborne fungi control efficacy in the suburbs of Beijing in China in 2010-2014. Randomized blocks with three replicates were designed in each trial. The combination of 1,3-D+DMDS (10+30 g m-2) significantly controlled Meloidogyne incognita, effectively suppressed the infestation of Fusarium oxysporum and Phytophthora spp., and successfully provided high commercial fruit yields (equal to MB but higher than 1,3-D or DMDS). The fumigant soil treatments were significantly better than the untreated controls. These results indicate that 1,3-D+DMDS soil treatments can be applied by soil injection or chemigation as a promising MB alternative against soilborne pests in cucumber in China.展开更多
Molybdenum disulfide(MoS_(2)),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However...Molybdenum disulfide(MoS_(2)),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However,with the deepening of the research and exploration of the lithium storage mechanism of these advanced MoS_(2)-based anode materials,the complex reaction process influenced by internal and external factors hinders the exhaustive understanding of the lithium storage process.To design stable anode material with high performance,it is urgent to review the mechanisms of reported anode materials and summarize the related factors that influence the reaction processes.This review aims to dissect all possible side reactions during charging and discharging process,uncover internal and external factors inducing various anode reactions and finally put forward strategies of controlling high cycling capacity and super-stable lithium storage capability of MoS_(2).This review will be helpful to the design of MoS_(2)-based lithium-ion batteries(LIBs) with excellent cycle performance to enlarge the application fields of these advanced electrochemical energy storage devices.展开更多
Breast cancer is one of the leading causes of cancer-related deaths in women worldwide.It is a cancer that originates from the mammary ducts and involves mutations in multiple genes.Recently,the treatment of breast ca...Breast cancer is one of the leading causes of cancer-related deaths in women worldwide.It is a cancer that originates from the mammary ducts and involves mutations in multiple genes.Recently,the treatment of breast cancer has become increasingly challenging owing to the increase in tumor heterogeneity and aggressiveness,which gives rise to therapeutic resistance.Epidemiological,populationbased,and hospital-based case-control studies have demonstrated an association between high intake of certain Allium vegetables and a reduced risk in the development of breast cancer.Diallyl disulfide(DADS)and diallyl trisulfide(DATS)are the main allyl sulfur compounds present in garlic,and are known to exhibit anticancer activity as they interfere with breast cancer cell proliferation,tumor metastasis,and angiogenesis.The present review highlights multidrug resistance mechanisms and their signaling pathways in breast cancer.This review discusses the potential anticancer activities of DADS and DATS,with emphasis on drug resistance in triple-negative breast cancer(TNBC).Understanding the anticancer activities of DADS and DATS provides insights into their potential in targeting drug resistance mechanisms of TNBC,especially in clinical studies.展开更多
基金supported by the National Natural Science Foundation of China(32202253)the Natural Science Foundation of Anhui Higher Education Institutions,China(KJ2020A0102)the Talent Research Project of Anhui Agricultural University,China(rc342001)。
文摘Rice blast,caused by Magnaporthe oryzae,is a fungal disease that causes devastating damage to rice production worldwide.During infection,pathogens secrete effector proteins that modulate plant immunity.Disulfide bond formation catalyzed by protein disulfide isomerases(PDI)is essential for protein folding and maturation.However,the biological function of Pdi1 in M.oryzae has not yet been characterized.In this study,we identified the endoplasmic reticulum(ER)-located protein,MoPdi1,in M.oryzae.MoPdi1 regulates conidiation,cell wall stress,and pathogenicity of M.oryzae.Furthermore,the CGHC active sites in the a and a'redox domain of MoPdi1 were essential for the biological function of MoPDI1.Further tests demonstrated that MoPdi1 was involved in the regulation of ER stress and positively regulated ER phagy.We also found that MoPdi1 interacted with MoHut1.Deletion of MoPDI1 led to the bereft of MoHut1 dimerization,which depends on the formation of disulfide bonds.In addition,MoPdi1 affected the normal secretion of the cytoplasmic effector AVR-Pia.We provided evidence that MoHut1 is important for the vegetative growth,conidiation,and pathogenicity in M.oryzae.Therefore,our findings could provide a suitable target point for designing antifungal agrochemicals against rice blast fungus.
基金the financial support from the Science, Technology, and Innovation Funding Authority (STIFA, STDF previously) through project number 42691 entitled “Microstructure-Based, Multi-Physics Simulation and Optimization to Improve Battery Performance”supported by the U.S. DOE (Department of Energy), Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357supported by the U.S. DOE Vehicle Technologies office, under contract number DE-AC02-06CH11357
文摘This study investigates the electrochemical behavior of molybdenum disulfide(MoS_(2))as an anode in Li-ion batteries,focusing on the extra capacity phenomenon.Employing advanced characterization methods such as in situ and ex situ X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,and transmission electron microscopy,the research unravels the complex structural and chemical evolution of MoS_(2) throughout its cycling.A key discovery is the identification of a unique Li intercalation mechanism in MoS_(2),leading to the formation of reversible Li_(2)MoS_(2) phases that contribute to the extra capacity of the MoS_(2) electrode.Density function theory calculations suggest the potential for overlithiation in MoS_(2),predicting Li5MoS_(2) as the most energetically favorable phase within the lithiation–delithiation process.Additionally,the formation of a Li-rich phase on the surface of Li_(4)MoS_(2) is considered energetically advantageous.After the first discharge,the battery system engages in two main reactions.One involves operation as a Li-sulfur battery within the carbonate electrolyte,and the other is the reversible intercalation and deintercalation of Li in Li_(2)MoS_(2).The latter reaction contributes to the extra capacity of the battery.The incorporation of reduced graphene oxide as a conductive additive in MoS_(2) electrodes notably improves their rate capability and cycling stability.
基金supported by the Fundamental Re-search Funds for the Central Universities(Ganglong Cui)and National Key Research and Development Pro-gram of China(No.2021YFA1500703 to Ganglong Cui)National Natural Science Foundation of China(No.22103067 to Xiao-Ying Xie)and Natural Science Foundation of Shandong Province(No.ZR2021QB105 to Xiao-Ying Xie).
文摘Heterostructures of organic semi-conductors and transition metal dichalcogenides(TMDs)are viable candidates for superior optoelec-tronic devices.Photoinduced inter-facial charge transfer is crucial for the performance efficiency of such devices,yet the underlying mecha-nism,especially the roles of optical-ly dark triplets and spatially sepa-rated charge transfer states,is poorly understood.In the present work,we obtain the struc-tures of distinct excited states and investigate how they are involved in the charge transfer process at the Pd-octaethylporphyrin(PdOEP)and WS_(2) interface in terms of their energies and couplings.The results show that electron transfer from the triplet PdOEP formed via intersystem crossing prevails over direct electron transfer from the singlet(two orders of magnitude faster).Further analysis reveals that the relatively higher rate of triplet electron transfer compared to singlet electron transfer is mainly attributed to a smaller reorganization energy,which is dominated by the out-of-plane vibrations of the organic component.The work emphasizes the important roles of the optically dark triplets in the electron transfer of the PdOEP@WS_(2) heterostructure,and provides valuable theoretical insights for further improv-ing the optoelectronic performance of TMD-based devices.
文摘pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical properties, hydrophilicity/hydrophobicity, signal peptide, secondary structure, coiled coil, transmembrane domains, O-glycogylation site, active site, subcellular localization, functional structural domains and three-dimensional structure were analyzed by a series of bioinformatics software. The results showed that mPDI was a hydrophobic and stable protein with 3 coiled coils, 30-glycogylation sites, 2 structural domains of thioredoxin, 2 active sites of thioredoxin, and located in rough endoplasmic reticulum. It has 512 amino acids, the theoretical pl is 4.98, and signal peptide located in 1-24AA. In the secondary structure, a-helix, random coil, extended chain is 26.37%, 53.32%, 20.31% respectively. The validation of modeling accords with the stereochemistry.
基金National Natural Science Foundation of China(Grant No.20332010)the Ministry of Science and Technology of China(Grant No.2005BA711A04,2006AA02Z144).
文摘In order to prepare pyrimidine nucleoside-peptide conjugate concisely, we developed a one-pot synthetic strategy. Started from uridine, 5-S-acetyl-thiomethyl-2',3 '-di-O-isopropylidene-uridine (4) was synthesized as the key intermediate in four steps. Under acidic condition, compound 4 was deprotected and reacted with PySS-R (8, 12, 15, Py = 2-pyridyl, R = amino acid or peptide) in one pot to form uridine conjugates (9, 13, 2) with disulfide bond as linker.
基金Supported partially by the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,Zhejiang University of TechnologyPriority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2009-0094047)
文摘Molybdenum disulfide nanoflakes were synthesized by a simple hydrothermal process using sodium molybdate and thiourea as reactants at a relatively low temperature. X-ray diffraction(XRD) and transmission elec-tron microscopy(TEM) indicate that the samples have the structure of 2H-MoS2 and the morphology of nanoflakes with the average thickness around 5-10 nm. The results of electrochemical properties indicate that the morphology and size of MoS2 particles have effects on their capacity when they are used as the anode for lithium ion battery. The as-prepared MoS2 samples have high reversible discharge capacity up to 994.6 mA·h·g-1 for the MoS2-1 elec-trode and 930.1 mA·h·g-1 for the MoS2-2 electrode and show excellent cycling performances. The MoS2-1 electrode has a better cycling stability than the MoS2-2 electrode due to their difference in the uniformity of the samples.
文摘Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whether ROS regulate caspase-9 via direct oxidative modification. The present study aims to elucidate the molecular mechanisms by which ROS mediate caspase-9 activation. Our results show that the cellular oxidative state facilitates caspase-9 activation. Hydrogen peroxide treatment causes the activation of caspase-9 and apoptosis, and promotes an interac- tion between easpase-9 and apoptotic protease-activating factor 1 (Apaf-1) via disulfide formation. In addition, in an in vitro mitochondria-free system, the thiol-oxidant diamide promotes auto-cleavage of caspase-9 and the caspase-9/ Apaf-1 interaction by facilitating the formation of disulfide-linked complexes. Finally, a point mutation at C403 of caspase-9 impairs both H2O2-promoted caspase-9 activation and interaction with Apaf-1 through the abolition of disulfide formation. The association between cytochrome c and the C403S mutant is significantly weaker than that between cytochrome c and wild-type caspase-9, indicating that oxidative modification of caspase-9 contributes to apoptosome formation under oxidative stress. Taken together, oxidative modification of caspase-9 by ROS can medi- ate its interaction with Apaf-1, and can thus promote its auto-cleavage and activation. This mechanism may facilitate apoptosome formation and caspase-9 activation under oxidative stress.
基金the Natural Science Foundation of Jiangxi Education Department(No.GJJ170680)the National Natural Science Foundation of China(Nos.51963010,21867011,and 51563011).
文摘Self-healing polymers based on dynamic crosslinkers have drawn rapidly increasing interest over the last decade.Here,a self-healable epoxy network with exchangeable disulfide bonds was synthesized by polymerizing two epoxies with an aromatic amine containing a disulfide bond.The bisphenol A diglycidyl ether(DGEBA)and poly(ethylene glycol)diglycidyl ether(DER736)were used as rigid and soft components,respectively.The crosslinking densities of studied polymers decreased with the increasing amount of DER736,resulting in the lower glassy temperature and weaker mechanical strength.The dynamic covalent network character of disulfide bond and its low active energy were also investigated through stress relaxation experiments at various temperatures.The self-healing performance of healable epoxy resins with varied flexibility was measured by tensile tests.The tensile strength of a full-cut sample was restored to 84%(13 MPa)of the initial values(16 MPa)at moderate temperature.Its healed fracture strain was up to 505%.Moreover,the effect of healing time and temperature on the self-healing properties was also studied.A model was proposed to investigate the self-repairing efficiency evolution with healing time,suggesting that hydrogen bonds mainly contributed to the initial sticking or interfacial adhesion while disulfide links and chain interdiffusion assisted time dependent reformation of networks to restore the original mechanical strength.
文摘Through using mineral oil and synthetic oil to deploy the semisynthesis base oil, modifying the surfaces of ultrafine tungsten disulfide grains by surface chemical embellishment and adsorption embellishment to make them suspended steadily in the base oil as solid lubricating additive, and adding some function additives, the tungsten disulfide motor oil was prepared. The tribological characteristics of this kind motor oil and the well-known motor oils in our country and overseas were studied. The results show that the oil film strength of this kind of motor oil is respectively 1.06 and 1.38 times of that of shell helix ultra motor oil and great wall motor oil, and its sintering load is 1.75 and 2.33 times of that of them, and when tested under 392 N, 1 450 r/rain and 30 min, the friction coefficients of friction pairs lubricated by the tungsten disulfide motor oil decrease with the increase of time, meanwhile, the diameter of worn spot is small, and the surface of worn spot is smooth, and no obvious furrows appear. The experiments indicate that the tungsten disulfide motor oil has the better antiwear, antifriction and extreme pressure properties than the well-known motor oils.
基金supported by the Ministry of Environmental Protection,Public Welfare Project(Contract No 201109034)the National Natural Science Foundation(U1137603)
文摘In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, 02 concentration, gas hourly space velocity (GHSV) and relative humidity (RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% A1203 calcined at 300 ℃ had supe- rior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2 was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2 decrease. A small amount of 02 introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.
文摘A reversible disulfide bond-based self-healing polyurethane with triple shape memory properties was prepared by chain extending of random copolymer poly(lactide-co-caprolactone)(PCLA), hexamethylene diisocyanate (HDI), polytetrahydrofuran (PTMEG), and 4,4,-aminophenyl disulfide. The chemical structures were characterized using 1H nuclear magnetic resonance (^1H-NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). The thermal properties, selfhealing properties, triple-shape memory effect, and quantitative shape memory response were evaluated by differential scanning calorimetry (DSC), tensile tests, two-step programming process thermal mechanical experiments, and subsequent progressive thermal recovery. The self-healing mechanism and procedures were investigated using polarizing optical microscopy (POM) and an optical profiler. It was concluded that self-healing properties (up to 60%) and triple-shape memory properties around 35 and 50℃(with shape fixation ratios of 94.3% and 98.3%, shape recovery ratios of 76.6% and 85.1%, respectively) were integrated to the shape memory polyurethane. As-prepared polyurethane is expected to have potential applications in multi-shape coatings, films, and step-by-step deploying structures.
文摘This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.
基金supported by the National Natural Science Foundation of China(No.51873110)the Foundation of Guangdong Provincial Key Laboratory of Natural Rubber Processing and Key Laboratory of Carb on Fiber and Functio nal Polymers(Beijing University of Chemical Technology),Ministry of Educati on.
文摘Elastomers with outstanding strength,toughness and healing efficiency are highly promising for many emerging fields.However,it is still a challenge to integrate all these beneficial features in one elastomer.Herein,an asymmetric alicyclic structure adjacent to aromatic disulfide was tactfully introduced into the backbone of polyurethane(PU)elastomer.Specifically,such elastomer(PU-HPS)was fabricated by polycondensing polytetramethylene ether glycol(PTMEG),isophorone diisocyanate(IPDI)and p-hydroxydiphenyl disulfide(HPS)via one-pot method.The molecular mobility and phase morphology of PU-HPS can be tuned by adjusting the HPS content.Consequently,the dynamic exchange of hydrogen and disulfide bonds in the hard segment domains can also be tailored.The optimized sample manifests outstanding tensile strength(46.4 MPa),high toughness(109.1 MJ/m^(3)),high self-healing efficiency after fracture(90.3%),complete scratch recovery(100%)and good puncture resistance.Therefore,this work provides a facile strategy for developing robust self-healing polymers.
基金supported by the National Key R&D Program of China (No.2018YFC0213400)the National Natural Science Foundation of China (Nos.51968034,41807373,21667015 and51708266)the Science and Technology Program of Yunnan province (No.2019FB069)。
文摘The sol–gel method was used to synthesize a series of metal oxides-supported activated carbon fiber (ACF) and the simultaneous catalytic hydrolysis activity of carbonyl sulfide (COS)and carbon disulfide (CS2) at relatively low temperatures of 60°C was tested.The effects of preparation conditions on the catalyst properties were investigated,including the kinds and amount of metal oxides and calcination temperatures.The activity tests indicated that catalysts with 5 wt.%Ni after calcining at 400°C (Ni(5)/ACF(400)) had the best performance for the simultaneous catalytic hydrolysis of COS and CS2.The surface and structure properties of prepared ACF were characterized by scanning electron microscope-energy disperse spectroscopy (SEM-EDS),Brunauer–Emmett–Teller (BET),X-ray diffraction (XRD),carbon dioxidetemperature programmed desorption (CO2-TPD) and diffuse reflectance Fourier transform infrared reflection (DRFTIR).And the metal cation defects were researched by electron paramagnetic resonance (EPR) method.The characterization results showed that the supporting of Ni on the ACF made the ACF catalyst show alkaline and increased the specific surface area and the number of micropores,then improved catalytic hydrolysis activity.The DRFTIR results revealed that-OH species could facilitate the hydrolysis of COS and CS2;-COO and-C–O species could facilitate the oxidation of catalytic hydrolysate H2S.And the EPR results showed that high calcination temperature conditions provide more active reaction center for the COS and CS2 adsorption.
基金financial support provided by the National Natural Science Foundation of China(Grant No.U1806225)the National Natural Science Foundation of China(Grant No.51908092)the Joint Funds of the National Natural Science Foundation of China-Guangdong(Grant No.U1801254)。
文摘Epoxy resin powder coating has been successfully applied on the corrosion protection of magnesium lithium alloys.However,poor wear resistance and microcracks formed during the solidification have limited it extensive application.There are limited approaches to exploit such anti-corrosion and mechanical properties of magnesium lithium alloys.Herein,the epoxy resin powder coating with polydopamine modified molybdenum disulfide(MoS_(2)@PDA-EP powder coating with 0,0.1,0.2,0.5,1.0 wt.%loading)was well prepared by melt extrusion to investigate its anticorrosion performance and wear resistance.The results revealed that the addition of MoS_(2)@PDA enhanced the adhesion strength between coatings and alloys,wear resistance and corrosion protection of the powder coatings.Among them,the optimum was obtained by 0.2 wt.%MoS_(2)@PDA-EP powder coating which could be attributed to well dispersion and efficient adhesion with coating matrix.To conclude,MoS_(2)@PDA-EP powder coating is meaningfully beneficial for the anticorrosive and wear performance improvement of magnesium lithium alloys.
基金funding from the National Natural Science Foundation of China(No.81703451 and 81773656)the Excellent Youth Science Foundation of Liaoning Province(No.2020-YQ-06)+2 种基金the Liaoning Revitalization Talents Program(No.XLYC1808017 and XLYC1907129)the China Postdoctoral Science Foundation(No.2020M670794)the Science and Technology Major Project of Liaoning(No.2019JH1/10300004)。
文摘Disulfide bond-bridging strategy has been extensively utilized to construct tumor specificity-responsive aliphatic prodrug nanoparticles(PNPs) for precise cancer therapy. Yet, there is no research shedding light on the impacts of the saturation and cis-trans configuration of aliphatic tails on the self-assembly capacity of disulfide bond-linked prodrugs and the in vivo delivery fate of PNPs. Herein, five disulfide bond-linked docetaxelfatty acid prodrugs are designed and synthesized by using stearic acid, elaidic acid, oleic acid, linoleic acid and linolenic acid as the aliphatic tails, respectively. Interestingly, the cistrans configuration of aliphatic tails significantly influences the self-assembly features of prodrugs, and elaidic acid-linked prodrug with a trans double bond show poor self-assembly capacity. Although the aliphatic tails have almost no effect on the redox-sensitive drug release and cytotoxicity, different aliphatic tails significantly influence the chemical stability of prodrugs and the colloidal stability of PNPs, thus affecting the in vivo pharmacokinetics, biodistribution and antitumor efficacy of PNPs. Our findings illustrate how aliphatic tails affect the assembly characteristic of disulfide bond-linked aliphatic prodrugs and the in vivo delivery fate of PNPs, and thus provide theoretical basis for future development of disulfide bond-bridged aliphatic prodrugs.
基金financially supported by the National Natural Science Foundation of China(Grant No.51572166)the China Postdoctoral Science Foundation(Grant No.2021M702073)+1 种基金the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(Grant No.202002AB080001-1)support from the Program for Professors with Special Appointments(Eastern Scholar:TP2014041)at Shanghai Institutions of Higher Learning。
文摘Molybdenum disulfide(MoS_(2))-based materials as the non-noble metal catalysts have displayed the potential capability to drive electrocatalytic hydrogen evolution reaction(HER)for green hydrogen production along with their intrinsic activity,tunable electronic properties,low cost,and abundance reserves,which have attracted intensive attention as alternatives to the low-abundance and high-cost platinum-based catalysts.However,their insufficient catalytic HER activities and stability are the major challenges for them to become practically applicable.Hereby,the MoS_(2)-based electrocatalysts for HER are comprehensively reviewed to explain the fundamental science behind the manipulations of the crystal structure,microstructure,surface,and interface of MoS_(2) in order to enhance its catalytic performance through changing the electrical conductivity,the number of active sites,surface wettability,and the Gibbs free energy for hydrogen adsorption(ΔGH).Recent studies in surface/interface engineering,such as phase engineering,defect engineering,morphology design,and heterostructure construction,are analyzed to reveal the state-of-the-art strategies for designing and preparing the cost-effective and highperformance MoS_(2)-based catalysts through optimizing the charge transfer,surface-active sites,ΔGH,and surface hydrophilicity.Lastly,the perspectives,challenges,and future research directions of HER electrocatalysis are also given to facilitate the further research and development of HER catalysts.
基金supported by Beijing Team-Innovation, Modern Agricultural and Industrial Technology Innovation System of China (2010B064)the Program on Substituted Technology for Methyl Bromide in China (Special Finance of Chinese Ministry of Agriculture, 2110402) over the years
文摘The combination of 1,3-dichloropropene+dimethyl disulfide (1,3-D+DMDS), which forms a pre-plant soil fumigant, can provide a substitute for the environmentally unfriendly methyl bromide (MB). Three greenhouse trials were performed to evaluate the root-knot nematode and soilborne fungi control efficacy in the suburbs of Beijing in China in 2010-2014. Randomized blocks with three replicates were designed in each trial. The combination of 1,3-D+DMDS (10+30 g m-2) significantly controlled Meloidogyne incognita, effectively suppressed the infestation of Fusarium oxysporum and Phytophthora spp., and successfully provided high commercial fruit yields (equal to MB but higher than 1,3-D or DMDS). The fumigant soil treatments were significantly better than the untreated controls. These results indicate that 1,3-D+DMDS soil treatments can be applied by soil injection or chemigation as a promising MB alternative against soilborne pests in cucumber in China.
基金financially supported by the National Funds for Distinguished Young Scientists (No. 61825503)the National Natural Science Foundation of China (Nos. 51902101, 61775101,61804082)+3 种基金the Youth Natural Science Foundation of Hunan Province (No. 2019JJ50044)Natural Science Foundation of Jiangsu Province (No. BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications (No. NY219144)China Postdoctoral Science Foundation (Nos. 2020TQ0202, 2021M692161)。
文摘Molybdenum disulfide(MoS_(2)),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However,with the deepening of the research and exploration of the lithium storage mechanism of these advanced MoS_(2)-based anode materials,the complex reaction process influenced by internal and external factors hinders the exhaustive understanding of the lithium storage process.To design stable anode material with high performance,it is urgent to review the mechanisms of reported anode materials and summarize the related factors that influence the reaction processes.This review aims to dissect all possible side reactions during charging and discharging process,uncover internal and external factors inducing various anode reactions and finally put forward strategies of controlling high cycling capacity and super-stable lithium storage capability of MoS_(2).This review will be helpful to the design of MoS_(2)-based lithium-ion batteries(LIBs) with excellent cycle performance to enlarge the application fields of these advanced electrochemical energy storage devices.
基金supported by UGC-DAE-CSR,Kolkata(Grant No.:KC/CRS/19/RB-04/1047).
文摘Breast cancer is one of the leading causes of cancer-related deaths in women worldwide.It is a cancer that originates from the mammary ducts and involves mutations in multiple genes.Recently,the treatment of breast cancer has become increasingly challenging owing to the increase in tumor heterogeneity and aggressiveness,which gives rise to therapeutic resistance.Epidemiological,populationbased,and hospital-based case-control studies have demonstrated an association between high intake of certain Allium vegetables and a reduced risk in the development of breast cancer.Diallyl disulfide(DADS)and diallyl trisulfide(DATS)are the main allyl sulfur compounds present in garlic,and are known to exhibit anticancer activity as they interfere with breast cancer cell proliferation,tumor metastasis,and angiogenesis.The present review highlights multidrug resistance mechanisms and their signaling pathways in breast cancer.This review discusses the potential anticancer activities of DADS and DATS,with emphasis on drug resistance in triple-negative breast cancer(TNBC).Understanding the anticancer activities of DADS and DATS provides insights into their potential in targeting drug resistance mechanisms of TNBC,especially in clinical studies.