Sodium-sulfur and sodium-iodine batteries are attractive due to their low cost and high capacities.However,they suffer from polysulfide/polyiodide dissolution and fast capacity decay.To solve these issues,herein,an or...Sodium-sulfur and sodium-iodine batteries are attractive due to their low cost and high capacities.However,they suffer from polysulfide/polyiodide dissolution and fast capacity decay.To solve these issues,herein,an organic species-intercalated layered MoS_(2) with oxygen-dopant(Org-MoS_(2)) was designed for the iodine encapsulation.The chemically-bonded S^(2-) from the S-Mo-S layer can not only stabilize the in situ generated I^(+) intermediate to boost the redox kinetics and deep transformations of 2I^(-)←→I_(2)←→2I^(+),but also undergo the conversion of S^(2-)←→S^(δ-) in the high voltage range of 1.5-3.4 V without structural collapse and shuttle effect.That is owning to the I^(+)-induced local charge and the electron reservoir of multi-valent Mo,which facilitate effective charge transfer via alternate dipoles of I^(δ+)-^(δ-)S^(δ+)/^(δ-)O^(δ+)-^(δ-)Mo^(δ+)-^(δ-)S^(δ+) and promote the redox of I/S/Mo.Meanwhile,the incorporated organic species are transformed into an aromatic carbonaceous material with improved electron conductivity and thinner thickness in the cycling test accompanied by the exposure of more Mo-O-Mo linkages,resulting in an increasing ultrahigh capacity and outstanding long-term durability of Org-MoS_(2)@I_(2).展开更多
Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configuration...Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configurations,with hypersensitivity for mechanical stress,the piezoelectricity is created on the nonpiezoelectric graphene,and the hierarchical ZnNG exhibits obvious piezocatalytic activity of water splitting for H_(2) production even under mild agitation.The corresponding rate of H_(2) production is about 14.65 μmol g^(-1)h^(-1).It triggers a breakthrough in piezocatalytic H_(2) evolution under low-frequency vibration,and takes a significant step forward for piezocatalysis towards practical applications.Furthermore,the presented concept of confining atomic polar configuration for engineering piezoelectricity would open up new horizon for constructing new-type piezoelectrics based on both piezoelectric and nonpiezoelectric materials.展开更多
By simplifying saturatedly magnetized wire-rope to magnetic dipoles of the same magnetic field strength, an equivalent magnetic dipoles model is developed and the measuring principle for recognising damage of broken w...By simplifying saturatedly magnetized wire-rope to magnetic dipoles of the same magnetic field strength, an equivalent magnetic dipoles model is developed and the measuring principle for recognising damage of broken wire was presented. The relevant calculation formulas were also deduced. A composite solution method about nonlinear optimization was given. An example was given to illustrate the use of the equivalent magnetic dipoles method for quantitative damage recognition, and demonstrates that the result of this method is consistent with the real situation, so the method is valid and practical. wire-rope, damage of broken wires, quantitative recognition, equivalent magnetic dipoles, simulate展开更多
For the first time, we derive the dispersion energy for a molecule which involves the anisotropic dipole interaction by virtue of the invariant eigen-operator method, which greatly simplifies the usual calculation if ...For the first time, we derive the dispersion energy for a molecule which involves the anisotropic dipole interaction by virtue of the invariant eigen-operator method, which greatly simplifies the usual calculation if one uses the Schroedinger equation.展开更多
We deal with the Copenhagen problem where the two big bodies of equal masses are also magnetic dipoles and we study some aspects of the dynamics of a charged particle which moves in the electromagnetic field produced ...We deal with the Copenhagen problem where the two big bodies of equal masses are also magnetic dipoles and we study some aspects of the dynamics of a charged particle which moves in the electromagnetic field produced by the primaries. We investigate the equilibrium positions of the particle and their parametric variations, as well as the basins of attraction for various numerical methods and various values of the parameter λ.展开更多
Here, we initially introduced and demonstrated two principles: orientation OR principle and attraction AT principle of electrical dipoles. The OR principle stipulates that any two electrical dipoles P1A, P1B, from two...Here, we initially introduced and demonstrated two principles: orientation OR principle and attraction AT principle of electrical dipoles. The OR principle stipulates that any two electrical dipoles P1A, P1B, from two bodies A and B, at any distance in the free state each, will be reciprocally oriented parallel and in the same sense if the electrical interaction forces F between them are of decreasing type with distance r. If the electrical interaction forces F are of increasing type with distance, the two dipoles will be reciprocally oriented parallel but on the opposite sense. The AT principle stipulate that any two electrical dipoles P1A, P1B, at any distance in the free state each, will present always a reciprocal force of attraction FD in both cases of orientation accordingly to OR principle in case of any type of electrical force F decreasing or increasing with distance. These findings may complete our previous work where we found that FD force, between two electrical dipoles P1A, P1B considered at atomic and nuclear level, is in fact the actual gravitation Newton force FN. The paper must be considered together with this work for more consistency.展开更多
We present a non-relativistic approach to the equivalent polarization Peq=(1/c2)v×Meq, that appears in a magnetized medium in motion. We apply an analogous method to that used by Panofsky and Phillips to calculat...We present a non-relativistic approach to the equivalent polarization Peq=(1/c2)v×Meq, that appears in a magnetized medium in motion. We apply an analogous method to that used by Panofsky and Phillips to calculate the symmetric effect, the equivalent magnetization that appears in a polarized dielectric in motion, Meq=P×v,?This method is based on a particular expression of Maxwell’s equations and the application of the convective derivative. These authors argue, however, that the equivalent polarization can be obtained only with a relativistic approach. We show that with the same method, but with a different and equivalent expression of Maxwell’s equations, this effect can also be calculated. In this way both effects can be considered relativistic effects to first order in v/c.展开更多
As one of the fundamental outcomes of dislocation self-interaction,dislocation dipoles have an important influence on the plastic deformation of materials,especially on fatigue and creep.In this work,superdislocation ...As one of the fundamental outcomes of dislocation self-interaction,dislocation dipoles have an important influence on the plastic deformation of materials,especially on fatigue and creep.In this work,superdislocation dipoles inγ-TiAl andα_(2)-Ti_(3)Al were systematically investigated by atomistic simulations,with a variety of dipole heights,orientations and annealing tempe ratures.The results indicate that non-screw super-dipoles transform into locally stable dipolar or reconstructed cores at low temperature,while into isolated or interconnected point defect clusters and stacking fault tetrahedra at high temperature via short-range diffu sion.Non-screw super-dipoles inγ-TiAl andα_(2)-Ti_(3)Al exhibit similar features as fcc and hcp metals,respectively.Generally,over long-term annealing where diffusion is significant,60°superdipoles inγ-TiAl are stable,whereas the stability of super-dipoles inα2-Ti3 Al increases with dipole height and orientation angle.The influence on mechanical properties can be well evaluated by integrating these results into mesoscale or constitutive models.展开更多
This study assesses the reproducibility of 31 historical simulations from 1850 to 2014 in the Coupled Model Intercomparison Project phase 6(CMIP6) for the subsurface(Sub-IOD) and surface Indian Ocean Dipole(IOD) and t...This study assesses the reproducibility of 31 historical simulations from 1850 to 2014 in the Coupled Model Intercomparison Project phase 6(CMIP6) for the subsurface(Sub-IOD) and surface Indian Ocean Dipole(IOD) and their association with El Ni?o-Southern Oscillation(ENSO). Most CMIP6 models can reproduce the leading east-west dipole oscillation mode of heat content anomalies in the tropical Indian Ocean(TIO) but largely overestimate the amplitude and the dominant period of the Sub-IOD. Associated with the much steeper west-to-east thermocline tilt of the TIO, the vertical coupling between the Sub-IOD and IOD is overly strong in most CMIP6 models compared to that in the Ocean Reanalysis System 4(ORAS4). Related to this, most models also show a much tighter association of Sub-IOD and IOD events with the canonical ENSO than observations. This explains the more(less) regular Sub-IOD and IOD events in autumn in those models with stronger(weaker) surface-subsurface coupling in TIO. Though all model simulations feature a consistently low bias regarding the percentage of the winter–spring Sub-IOD events co-occurring with a Central Pacific(CP) ENSO, the linkage between a westward-centered CP-ENSO and the Sub-IOD that occurs in winter–spring, independent of the IOD, is well reproduced.展开更多
Twinning is found to impart favorable mechanical,physical and chemical properties to nanostructured materials.Deformation twinning prevails in face-centered cubic(FCC)nanocrystalline materials upon loading.In FCC stru...Twinning is found to impart favorable mechanical,physical and chemical properties to nanostructured materials.Deformation twinning prevails in face-centered cubic(FCC)nanocrystalline materials upon loading.In FCC structures,the<112>{111}deformation twinning is traditionally believed to nucleate and grow through layer-by-layer emission of 1/6<112>Shockley partial dislocations on consecutive{111}planes.We report that deformation twinning is able to occur in crystalline(Fe,Nb)_(23)Zr_(6)nanoparticles(NPs)that have a large Mn 23 Th 6-type FCC structure with a Zr-octahedron as a motif.Based on direct atomic-scale observations,we discover a new zero-net-strain path for the<112>{111}deformation twin-ning in FCC structures.To form a[¯1¯12]/(111)twin,for example,short(¯1¯11)planes within two adjacent(111)plane layers in the repeated three-layer sequence of(111)planes are shear deformed continuously by a shear-force dipole along the[11¯2]direction like a domino effect,whereas the other(111)plane in the repeated sequence remains intact.In addition,a loading criterion for deformation twinning of a FCC NP under uniaxial compression is proposed based on our observations.Our work here not only extends the fundamental understanding on deformation twinning in FCC structures,but also opens up studies of deformation behaviors in a class of Mn 23 Th 6-type FCC materials.展开更多
The modified dipolar Poisson-Boltzmann (MDPB) equation, where the electrostatics of the dipolar interactions of solvent molecules and also the finite size effects of ions and dipolar solvent molecules are explicitly...The modified dipolar Poisson-Boltzmann (MDPB) equation, where the electrostatics of the dipolar interactions of solvent molecules and also the finite size effects of ions and dipolar solvent molecules are explicitly taken into account on a mean-field level, is studied numerically for a two-plate system with oppositely charged surfaces. The MDPB equation is solved numerically, using the nonlinear Multigrid method, for one-dimensional finite volume meshes. For a high enough surface charge density, numerical results of the MDPB equation reveal that the effective dielectric constant decreases with the increase of the surface charge density. Furthermore, increasing the salt concentration leads to the decrease of the effective dielectric constant close to the charged surfaces. This decrease of the effective dielectric constant with the surface charge density is opposite to the trend from the dipolar Poisson Boltzmann (DPB) equation. This seemingly inconsistent result is due to the fact that the mean-field approach breaks down in such highly charged systems where the counterions and dipoles are strongly attracted to the charged surfaces and form a quasi two-dimensional layer. In the weak-coupling regime with the electrostatic coupling parameter (the ratio of Bjerrum length to Gouy-Chapman length) Ξ 〈 1, where the MDPB equation works, the effective dielectric constant is independent of the distance from the charged surfaces and there is no accumulation of dipoles near the charged surfaces. Therefore, there are no physical and computational advantages for the MDPB equation over the modified Poisson-Boltzmann (MPB) equation where the effect of dipolar interactions of solvent dipoles is implicitly taken into account in the renormalised dielectric constant.展开更多
The study displays the existence of a gravitational singularity in the universe generating synchronized and extremely low frequency plane TEM (transverse electromagnetic) waves. It is proposed that atomic intrinsic el...The study displays the existence of a gravitational singularity in the universe generating synchronized and extremely low frequency plane TEM (transverse electromagnetic) waves. It is proposed that atomic intrinsic electromagnetic fields create resonance with these plane TEM waves, causing atoms to receive and to re-emit synchronized plane TEM waves. The energy flow of synchronized plane TEM waves, travelling in opposite directions between e.g. two atoms, creates mutual force of attraction, i.e. gravity. Consequently, gravity is not an intrinsic atomic feature;however, the result of passive atoms exposed to electromagnetic energy. The study describes how plane TEM waves emitted by the gravitational singularity were measured. The study also displays how gravity from the earth, moon, sun and the gravitational singularity was measured and how gravity was simulated using an electronic device. The present electromagnetic law of gravity is compared with Newtonian geometric law of gravity.展开更多
Free rotating impurity-vacancy (IV) dipoles in an alkali halide matrix are polarized to the extent of 1/3 of the total number of IV dipoles. An experimental procedure is suggested in this article which will help in th...Free rotating impurity-vacancy (IV) dipoles in an alkali halide matrix are polarized to the extent of 1/3 of the total number of IV dipoles. An experimental procedure is suggested in this article which will help in the polarization of IV dipoles to the extent of 2/3 of the total number of IV dipoles. In the suggested experimental procedure, the electric field will be applied at first in one direction and then will be applied in succession in opposite direction. Ionic thermocurrent technique is employed to ascertain the increase in polarization of IV dipoles.展开更多
The super ferric superconducting dipoles are in development for the High Intensity high Energy FRagment Separator(HFRS)of the Heavy-ion Accelerator Facility(HIAF).The dipole magnets of the separator will have a deflec...The super ferric superconducting dipoles are in development for the High Intensity high Energy FRagment Separator(HFRS)of the Heavy-ion Accelerator Facility(HIAF).The dipole magnets of the separator will have a deflection radius of 15.7 m,a field up to 1.6 T with a 320 mm wide good field region and an effective length of 2.74 m.In the HIAF-HFRS,there will be a total of 11 super ferric dipoles.The dipole consists of two superconducting coils,a coil box,a cryostat,and a warm iron warm laminated iron,as shown in Fig.1.The superconducting coils are protected by the active quench protection.展开更多
Achieving high-energy density remains a key objective for advanced energy storage systems.However,challenges,such as poor cathode conductivity,anode dendrite formation,polysulfide shuttling,and electrolyte degradation...Achieving high-energy density remains a key objective for advanced energy storage systems.However,challenges,such as poor cathode conductivity,anode dendrite formation,polysulfide shuttling,and electrolyte degradation,continue to limit performance and stability.Molecular and ionic dipole interactions have emerged as an effective strategy to address these issues by regulating ionic transport,modulating solvation structures,optimizing interfacial chemistry,and enhancing charge transfer kinetics.These interactions also stabilize electrode interfaces,suppress side reactions,and mitigate anode corrosion,collectively improving the durability of high-energy batteries.A deeper understanding of these mechanisms is essential to guide the design of next-generation battery materials.Herein,this review summarizes the development,classification,and advantages of dipole interactions in high-energy batteries.The roles of dipoles,including facilitating ion transport,controlling solvation dynamics,stabilizing the electric double layer,optimizing solid electrolyte interphase and cathode–electrolyte interface layers,and inhibiting parasitic reactions—are comprehensively discussed.Finally,perspectives on future research directions are proposed to advance dipole-enabled strategies for high-performance energy storage.This review aims to provide insights into the rational design of dipole-interactive systems and promote the progress of electrochemical energy storage technologies.展开更多
The relaxation time under zero field reflects the memory retention capabilities of single-molecule magnets(SMMs)when used as storage devices.Intermolecular magnetic dipole interaction is ubiquitous in aggregates of ma...The relaxation time under zero field reflects the memory retention capabilities of single-molecule magnets(SMMs)when used as storage devices.Intermolecular magnetic dipole interaction is ubiquitous in aggregates of magnetic molecules and can greatly influence relaxation times.However,such interaction is often considered harmful and challenging to manipulate in molecular solids,especially for high-performance lanthanide single-ion magnets(SIMs).By an elaborately designed combination of ion pairing and hydrogen bonding,we have synthesized two pseudo-D_(5h) SIMs with supramolecular arrangements of magnetic dipoles in staggered and side-by-side patterns,the latter of which exhibits a 10^(4)-fold slower zero-field relaxation time at 2 K.Intriguingly,the side-by-side complex exhibits a significantly accelerated magnetic relaxation upon diamagnetic dilution,contrary to the general trend observed in the staggered complex.This strongly reveals the presence of aggregation-induced suppression of quantum tunneling in a side-by-side arrangement,which has not been observed in mononuclear SMMs.By leveraging ion-pairing aggregation and converting to a side-by-side pattern,this study successfully demonstrates an approach to transform a harmful intermolecular dipole interaction into a beneficial one,achieving a τ_(QTM) of 980 s ranking among the best-performance SMMs.展开更多
Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(EN...Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.展开更多
An unfortunate and fortunate discovery is that metal halide perovskites are not completely defect tolerant,while fullerenes,which are inexpensive and broadly applied in organic solar cells,have a considerable passivat...An unfortunate and fortunate discovery is that metal halide perovskites are not completely defect tolerant,while fullerenes,which are inexpensive and broadly applied in organic solar cells,have a considerable passivation effect toward the surface defects of perovskite materials[1].The improvement of perovskite efficiency and stability in the last five years has shown the importance of passivating interfacial charge traps to reduce charge carrier recombination and to slow down the degradation of perovskites[2].展开更多
With the increasing demand of high brightness in light source, the uniform dipole can not meet the needs of low emittance, and thus the dipole with bending radius variation is introduced in this paper. The transfer ma...With the increasing demand of high brightness in light source, the uniform dipole can not meet the needs of low emittance, and thus the dipole with bending radius variation is introduced in this paper. The transfer matrix of a non-uniform dipole whose bending radius is linearly changed is chosen as an example and a very simple calculation formula of non-uniform dipole transfer matrices is given. The transfer matrices of some common profile non-uniform dipoles are also listed. The comparison of these transfer matrices and the matrices calculated with slices method verifies the numerical accuracy of this formula. This method can make the non-uniform beam dynamic problem simpler, very helpful for emittance research and lattice design with non-uniform dipoles.展开更多
The lack of a robust interfacial driving source over multicomponent photocatalysts is an essential contributor to the sluggish spatial charge transfer across the heterointerface and severe carrier recombination,thereb...The lack of a robust interfacial driving source over multicomponent photocatalysts is an essential contributor to the sluggish spatial charge transfer across the heterointerface and severe carrier recombination,thereby rendering maneuvering charge transfer of composite materials a thorny issue.Herein,we demonstrate an electric dipole moment-driven charge transfer photosystem utilizing amine-containing polyfluorene polyelectrolyte(i.e.,PFN)and inorganic semiconductor matrices(i.e.,WO_(3))as the building blocks to direct the interfacial charge transfer,effectively targeting the photoexcited charge carriers to the active sites.Experimental results and theoretical simulations reveal that the electronic coupling interaction between the pendant electron-rich amine groups along the PFN backbone and WO_(3)surface enables the nonuniform charge distribution at the interface over the WO_(3)@PFN heterojunction,which ultimately fosters the formation of interfacial dipoles oriented from conjugated macromolecular backbone of PFN to the surface of WO_(3)matrices.The interfacial dipoles with excellent charge transfer kinetics spontaneously activate the unidirectional and accelerated S-scheme charge motion from the WO_(3)framework to the conjugated chain of PFN due to the suitable band offsets at the interface,thus endowing WO_(3)@PFN heterostructures with a significantly enhanced net efficiency of photoactivity.These findings would provide some insights into the design of advanced heterojunction photocatalysts for solar energy conversion as well as the study of the working mechanism of polyelectrolyte interlayers in optoelectronic devices.展开更多
基金supported by the National Natural Science Foundation of China (22171030 and 21771028)the Large-Scale Instrument and Equipment Open Foundation in Chongqing University (202303150030)。
文摘Sodium-sulfur and sodium-iodine batteries are attractive due to their low cost and high capacities.However,they suffer from polysulfide/polyiodide dissolution and fast capacity decay.To solve these issues,herein,an organic species-intercalated layered MoS_(2) with oxygen-dopant(Org-MoS_(2)) was designed for the iodine encapsulation.The chemically-bonded S^(2-) from the S-Mo-S layer can not only stabilize the in situ generated I^(+) intermediate to boost the redox kinetics and deep transformations of 2I^(-)←→I_(2)←→2I^(+),but also undergo the conversion of S^(2-)←→S^(δ-) in the high voltage range of 1.5-3.4 V without structural collapse and shuttle effect.That is owning to the I^(+)-induced local charge and the electron reservoir of multi-valent Mo,which facilitate effective charge transfer via alternate dipoles of I^(δ+)-^(δ-)S^(δ+)/^(δ-)O^(δ+)-^(δ-)Mo^(δ+)-^(δ-)S^(δ+) and promote the redox of I/S/Mo.Meanwhile,the incorporated organic species are transformed into an aromatic carbonaceous material with improved electron conductivity and thinner thickness in the cycling test accompanied by the exposure of more Mo-O-Mo linkages,resulting in an increasing ultrahigh capacity and outstanding long-term durability of Org-MoS_(2)@I_(2).
基金supported by the National Natural Science Foundation of China (21802007)the Natural Science Foundation of Hunan Province (2020JJ5615)+1 种基金the Scientific Research Project of Hunan Provincial Department of Education (20B066)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-202001), Fuzhou University。
文摘Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configurations,with hypersensitivity for mechanical stress,the piezoelectricity is created on the nonpiezoelectric graphene,and the hierarchical ZnNG exhibits obvious piezocatalytic activity of water splitting for H_(2) production even under mild agitation.The corresponding rate of H_(2) production is about 14.65 μmol g^(-1)h^(-1).It triggers a breakthrough in piezocatalytic H_(2) evolution under low-frequency vibration,and takes a significant step forward for piezocatalysis towards practical applications.Furthermore,the presented concept of confining atomic polar configuration for engineering piezoelectricity would open up new horizon for constructing new-type piezoelectrics based on both piezoelectric and nonpiezoelectric materials.
基金Supported by the National Natural Science Foundation of China(50475166) and Natural Science Foundation of Shandong Province (Y2002F09) and Qingdao Scientific Bureau(04-3NS-10)
文摘By simplifying saturatedly magnetized wire-rope to magnetic dipoles of the same magnetic field strength, an equivalent magnetic dipoles model is developed and the measuring principle for recognising damage of broken wire was presented. The relevant calculation formulas were also deduced. A composite solution method about nonlinear optimization was given. An example was given to illustrate the use of the equivalent magnetic dipoles method for quantitative damage recognition, and demonstrates that the result of this method is consistent with the real situation, so the method is valid and practical. wire-rope, damage of broken wires, quantitative recognition, equivalent magnetic dipoles, simulate
基金The project supported by the President Foundation of the Chinese Academy of Sciences and National Natural Science Foundation of China under Grant No. 10475056.
文摘For the first time, we derive the dispersion energy for a molecule which involves the anisotropic dipole interaction by virtue of the invariant eigen-operator method, which greatly simplifies the usual calculation if one uses the Schroedinger equation.
文摘We deal with the Copenhagen problem where the two big bodies of equal masses are also magnetic dipoles and we study some aspects of the dynamics of a charged particle which moves in the electromagnetic field produced by the primaries. We investigate the equilibrium positions of the particle and their parametric variations, as well as the basins of attraction for various numerical methods and various values of the parameter λ.
文摘Here, we initially introduced and demonstrated two principles: orientation OR principle and attraction AT principle of electrical dipoles. The OR principle stipulates that any two electrical dipoles P1A, P1B, from two bodies A and B, at any distance in the free state each, will be reciprocally oriented parallel and in the same sense if the electrical interaction forces F between them are of decreasing type with distance r. If the electrical interaction forces F are of increasing type with distance, the two dipoles will be reciprocally oriented parallel but on the opposite sense. The AT principle stipulate that any two electrical dipoles P1A, P1B, at any distance in the free state each, will present always a reciprocal force of attraction FD in both cases of orientation accordingly to OR principle in case of any type of electrical force F decreasing or increasing with distance. These findings may complete our previous work where we found that FD force, between two electrical dipoles P1A, P1B considered at atomic and nuclear level, is in fact the actual gravitation Newton force FN. The paper must be considered together with this work for more consistency.
文摘We present a non-relativistic approach to the equivalent polarization Peq=(1/c2)v×Meq, that appears in a magnetized medium in motion. We apply an analogous method to that used by Panofsky and Phillips to calculate the symmetric effect, the equivalent magnetization that appears in a polarized dielectric in motion, Meq=P×v,?This method is based on a particular expression of Maxwell’s equations and the application of the convective derivative. These authors argue, however, that the equivalent polarization can be obtained only with a relativistic approach. We show that with the same method, but with a different and equivalent expression of Maxwell’s equations, this effect can also be calculated. In this way both effects can be considered relativistic effects to first order in v/c.
基金the National Key Research and Development Program of China(No.2016YFB0701304 and 2017YFB0306201)the Natural Science Foundation of China(Nos.51671195 and 91960202)+4 种基金the Frontier and Key Projects of the Chinese Academy of Sciences(Nos.QYZDJ-SSW-JSC031-01 and XXH13506-304)the Natural Science Foundation of Liaoning(No.20180510032)the Aeronautical Science Foundation of China(No.20160292002)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDC01000000)The Project is sponsored by the“Liaoning BaiQianWan”Talents Program。
文摘As one of the fundamental outcomes of dislocation self-interaction,dislocation dipoles have an important influence on the plastic deformation of materials,especially on fatigue and creep.In this work,superdislocation dipoles inγ-TiAl andα_(2)-Ti_(3)Al were systematically investigated by atomistic simulations,with a variety of dipole heights,orientations and annealing tempe ratures.The results indicate that non-screw super-dipoles transform into locally stable dipolar or reconstructed cores at low temperature,while into isolated or interconnected point defect clusters and stacking fault tetrahedra at high temperature via short-range diffu sion.Non-screw super-dipoles inγ-TiAl andα_(2)-Ti_(3)Al exhibit similar features as fcc and hcp metals,respectively.Generally,over long-term annealing where diffusion is significant,60°superdipoles inγ-TiAl are stable,whereas the stability of super-dipoles inα2-Ti3 Al increases with dipole height and orientation angle.The influence on mechanical properties can be well evaluated by integrating these results into mesoscale or constitutive models.
基金supported by the National Key R&D Program of China (Grant No. 2019YFA0606701)the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030004)。
文摘This study assesses the reproducibility of 31 historical simulations from 1850 to 2014 in the Coupled Model Intercomparison Project phase 6(CMIP6) for the subsurface(Sub-IOD) and surface Indian Ocean Dipole(IOD) and their association with El Ni?o-Southern Oscillation(ENSO). Most CMIP6 models can reproduce the leading east-west dipole oscillation mode of heat content anomalies in the tropical Indian Ocean(TIO) but largely overestimate the amplitude and the dominant period of the Sub-IOD. Associated with the much steeper west-to-east thermocline tilt of the TIO, the vertical coupling between the Sub-IOD and IOD is overly strong in most CMIP6 models compared to that in the Ocean Reanalysis System 4(ORAS4). Related to this, most models also show a much tighter association of Sub-IOD and IOD events with the canonical ENSO than observations. This explains the more(less) regular Sub-IOD and IOD events in autumn in those models with stronger(weaker) surface-subsurface coupling in TIO. Though all model simulations feature a consistently low bias regarding the percentage of the winter–spring Sub-IOD events co-occurring with a Central Pacific(CP) ENSO, the linkage between a westward-centered CP-ENSO and the Sub-IOD that occurs in winter–spring, independent of the IOD, is well reproduced.
文摘Twinning is found to impart favorable mechanical,physical and chemical properties to nanostructured materials.Deformation twinning prevails in face-centered cubic(FCC)nanocrystalline materials upon loading.In FCC structures,the<112>{111}deformation twinning is traditionally believed to nucleate and grow through layer-by-layer emission of 1/6<112>Shockley partial dislocations on consecutive{111}planes.We report that deformation twinning is able to occur in crystalline(Fe,Nb)_(23)Zr_(6)nanoparticles(NPs)that have a large Mn 23 Th 6-type FCC structure with a Zr-octahedron as a motif.Based on direct atomic-scale observations,we discover a new zero-net-strain path for the<112>{111}deformation twin-ning in FCC structures.To form a[¯1¯12]/(111)twin,for example,short(¯1¯11)planes within two adjacent(111)plane layers in the repeated three-layer sequence of(111)planes are shear deformed continuously by a shear-force dipole along the[11¯2]direction like a domino effect,whereas the other(111)plane in the repeated sequence remains intact.In addition,a loading criterion for deformation twinning of a FCC NP under uniaxial compression is proposed based on our observations.Our work here not only extends the fundamental understanding on deformation twinning in FCC structures,but also opens up studies of deformation behaviors in a class of Mn 23 Th 6-type FCC materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 20954001 and 10774079)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y7080401)+1 种基金the Natural Science Foundation of Ningbo City (Grant No. 2009A610056)the Startup Fund and K.C. Wong Magna Fund in Ningbo University
文摘The modified dipolar Poisson-Boltzmann (MDPB) equation, where the electrostatics of the dipolar interactions of solvent molecules and also the finite size effects of ions and dipolar solvent molecules are explicitly taken into account on a mean-field level, is studied numerically for a two-plate system with oppositely charged surfaces. The MDPB equation is solved numerically, using the nonlinear Multigrid method, for one-dimensional finite volume meshes. For a high enough surface charge density, numerical results of the MDPB equation reveal that the effective dielectric constant decreases with the increase of the surface charge density. Furthermore, increasing the salt concentration leads to the decrease of the effective dielectric constant close to the charged surfaces. This decrease of the effective dielectric constant with the surface charge density is opposite to the trend from the dipolar Poisson Boltzmann (DPB) equation. This seemingly inconsistent result is due to the fact that the mean-field approach breaks down in such highly charged systems where the counterions and dipoles are strongly attracted to the charged surfaces and form a quasi two-dimensional layer. In the weak-coupling regime with the electrostatic coupling parameter (the ratio of Bjerrum length to Gouy-Chapman length) Ξ 〈 1, where the MDPB equation works, the effective dielectric constant is independent of the distance from the charged surfaces and there is no accumulation of dipoles near the charged surfaces. Therefore, there are no physical and computational advantages for the MDPB equation over the modified Poisson-Boltzmann (MPB) equation where the effect of dipolar interactions of solvent dipoles is implicitly taken into account in the renormalised dielectric constant.
文摘The study displays the existence of a gravitational singularity in the universe generating synchronized and extremely low frequency plane TEM (transverse electromagnetic) waves. It is proposed that atomic intrinsic electromagnetic fields create resonance with these plane TEM waves, causing atoms to receive and to re-emit synchronized plane TEM waves. The energy flow of synchronized plane TEM waves, travelling in opposite directions between e.g. two atoms, creates mutual force of attraction, i.e. gravity. Consequently, gravity is not an intrinsic atomic feature;however, the result of passive atoms exposed to electromagnetic energy. The study describes how plane TEM waves emitted by the gravitational singularity were measured. The study also displays how gravity from the earth, moon, sun and the gravitational singularity was measured and how gravity was simulated using an electronic device. The present electromagnetic law of gravity is compared with Newtonian geometric law of gravity.
文摘Free rotating impurity-vacancy (IV) dipoles in an alkali halide matrix are polarized to the extent of 1/3 of the total number of IV dipoles. An experimental procedure is suggested in this article which will help in the polarization of IV dipoles to the extent of 2/3 of the total number of IV dipoles. In the suggested experimental procedure, the electric field will be applied at first in one direction and then will be applied in succession in opposite direction. Ionic thermocurrent technique is employed to ascertain the increase in polarization of IV dipoles.
文摘The super ferric superconducting dipoles are in development for the High Intensity high Energy FRagment Separator(HFRS)of the Heavy-ion Accelerator Facility(HIAF).The dipole magnets of the separator will have a deflection radius of 15.7 m,a field up to 1.6 T with a 320 mm wide good field region and an effective length of 2.74 m.In the HIAF-HFRS,there will be a total of 11 super ferric dipoles.The dipole consists of two superconducting coils,a coil box,a cryostat,and a warm iron warm laminated iron,as shown in Fig.1.The superconducting coils are protected by the active quench protection.
基金supported by the introduction of Talent Research Fund in Nanjing Institute of Technology(YKJ202204)the National Natural Science Foundation of China(52401282 and 52300206)the Natural Science Foundation of Jiangsu Province(BK20230701 and BK20230705).
文摘Achieving high-energy density remains a key objective for advanced energy storage systems.However,challenges,such as poor cathode conductivity,anode dendrite formation,polysulfide shuttling,and electrolyte degradation,continue to limit performance and stability.Molecular and ionic dipole interactions have emerged as an effective strategy to address these issues by regulating ionic transport,modulating solvation structures,optimizing interfacial chemistry,and enhancing charge transfer kinetics.These interactions also stabilize electrode interfaces,suppress side reactions,and mitigate anode corrosion,collectively improving the durability of high-energy batteries.A deeper understanding of these mechanisms is essential to guide the design of next-generation battery materials.Herein,this review summarizes the development,classification,and advantages of dipole interactions in high-energy batteries.The roles of dipoles,including facilitating ion transport,controlling solvation dynamics,stabilizing the electric double layer,optimizing solid electrolyte interphase and cathode–electrolyte interface layers,and inhibiting parasitic reactions—are comprehensively discussed.Finally,perspectives on future research directions are proposed to advance dipole-enabled strategies for high-performance energy storage.This review aims to provide insights into the rational design of dipole-interactive systems and promote the progress of electrochemical energy storage technologies.
基金National Key Research and Development Program of China,Grant/Award Number:2018YFA0306001NSFC,Grant/Award Numbers:22073115,22131011,21821003+2 种基金Pearl River Talent Plan of Guangdong,Grant/Award Number:2017BT01C161Science and Technology Projects in Guangzhou,Grant/Award Number:202201011095Guangdong Basic Research Center of Excellence for Functional Molecular Engineering。
文摘The relaxation time under zero field reflects the memory retention capabilities of single-molecule magnets(SMMs)when used as storage devices.Intermolecular magnetic dipole interaction is ubiquitous in aggregates of magnetic molecules and can greatly influence relaxation times.However,such interaction is often considered harmful and challenging to manipulate in molecular solids,especially for high-performance lanthanide single-ion magnets(SIMs).By an elaborately designed combination of ion pairing and hydrogen bonding,we have synthesized two pseudo-D_(5h) SIMs with supramolecular arrangements of magnetic dipoles in staggered and side-by-side patterns,the latter of which exhibits a 10^(4)-fold slower zero-field relaxation time at 2 K.Intriguingly,the side-by-side complex exhibits a significantly accelerated magnetic relaxation upon diamagnetic dilution,contrary to the general trend observed in the staggered complex.This strongly reveals the presence of aggregation-induced suppression of quantum tunneling in a side-by-side arrangement,which has not been observed in mononuclear SMMs.By leveraging ion-pairing aggregation and converting to a side-by-side pattern,this study successfully demonstrates an approach to transform a harmful intermolecular dipole interaction into a beneficial one,achieving a τ_(QTM) of 980 s ranking among the best-performance SMMs.
基金supported by the National Natural Science Foundation of China[grant numbers 41975087,U2242212,and 41975085]supported by the National Natural Science Foundation of China[grant number U2242212]。
文摘Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.
文摘An unfortunate and fortunate discovery is that metal halide perovskites are not completely defect tolerant,while fullerenes,which are inexpensive and broadly applied in organic solar cells,have a considerable passivation effect toward the surface defects of perovskite materials[1].The improvement of perovskite efficiency and stability in the last five years has shown the importance of passivating interfacial charge traps to reduce charge carrier recombination and to slow down the degradation of perovskites[2].
文摘With the increasing demand of high brightness in light source, the uniform dipole can not meet the needs of low emittance, and thus the dipole with bending radius variation is introduced in this paper. The transfer matrix of a non-uniform dipole whose bending radius is linearly changed is chosen as an example and a very simple calculation formula of non-uniform dipole transfer matrices is given. The transfer matrices of some common profile non-uniform dipoles are also listed. The comparison of these transfer matrices and the matrices calculated with slices method verifies the numerical accuracy of this formula. This method can make the non-uniform beam dynamic problem simpler, very helpful for emittance research and lattice design with non-uniform dipoles.
基金the financial support from the Guangdong International Science and Technology Cooperation Foundation(2020A0505100002)the 111 Project(BP0618009)+3 种基金the China Scholarship Council,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(2019B121205002)the RGC Senior Research Fellowship Scheme(SRFS2021-5S01)the Hong Kong Research Grants Council(PolyU 15307321)Research Institute for Smart Energy(CDAQ)
文摘The lack of a robust interfacial driving source over multicomponent photocatalysts is an essential contributor to the sluggish spatial charge transfer across the heterointerface and severe carrier recombination,thereby rendering maneuvering charge transfer of composite materials a thorny issue.Herein,we demonstrate an electric dipole moment-driven charge transfer photosystem utilizing amine-containing polyfluorene polyelectrolyte(i.e.,PFN)and inorganic semiconductor matrices(i.e.,WO_(3))as the building blocks to direct the interfacial charge transfer,effectively targeting the photoexcited charge carriers to the active sites.Experimental results and theoretical simulations reveal that the electronic coupling interaction between the pendant electron-rich amine groups along the PFN backbone and WO_(3)surface enables the nonuniform charge distribution at the interface over the WO_(3)@PFN heterojunction,which ultimately fosters the formation of interfacial dipoles oriented from conjugated macromolecular backbone of PFN to the surface of WO_(3)matrices.The interfacial dipoles with excellent charge transfer kinetics spontaneously activate the unidirectional and accelerated S-scheme charge motion from the WO_(3)framework to the conjugated chain of PFN due to the suitable band offsets at the interface,thus endowing WO_(3)@PFN heterostructures with a significantly enhanced net efficiency of photoactivity.These findings would provide some insights into the design of advanced heterojunction photocatalysts for solar energy conversion as well as the study of the working mechanism of polyelectrolyte interlayers in optoelectronic devices.