Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(EN...Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.展开更多
Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed d...Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed dataset of the magnetic field.However,the simultaneous fitting of these parameters often leads to multiple local optimal parameter sets.To address this fitting dilemma,Rong ZJ et al.(2021)recently developed a current loop model.This technique can successively separate and invert the loop parameters.Here,we further show how this technique can be reduced and modified to fit a dipole model.Applications of this reduced technique to the International Geomagnetic Reference Field model and the Martian crustal field model highlight its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly,a capability that sets it apart from existing methods.The potential impact of this technique on geomagnetism and planetary magnetism is significant,given its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly.展开更多
A cyclonic eddy(CE)is often accompanied by an anticyclonic eddy(AE)to the east of Vietnam in the South China Sea(SCS)in summer,but the dipole lifetime and the intrinsic connection between CE and AE are still understud...A cyclonic eddy(CE)is often accompanied by an anticyclonic eddy(AE)to the east of Vietnam in the South China Sea(SCS)in summer,but the dipole lifetime and the intrinsic connection between CE and AE are still understudied.Data from 1993-2021 reveal that the dipole lifetime are significantly correlated with the wind direction and speed in the dipole region.Higher wind speed was found to be associated with more eastward wind direction and tends to longer dipole lifetime.The wind stress work(WW)on the eddy is much stronger in the eastward jet region than in the CE and AE regions.Comparing of results of 12 higher and lower wind speed years reveal that higher wind can produce stronger mean current,WW and barotropic instability(T4)that further enhances eddy kinetic energy(EKE)and dipole lifetime.The correlations between the dipole CE and AE characteristics are insignificant on interannual scales and mostly insignificant on seasonal scales in the surface layer but significant on seasonal scales in the subsurface layers.In addition,the daily mean vertical profiles(0-500 m)of EKE,vorticity and total deformation rate(TD)between CE and AE remain significantly correlated throughout the dipole’s lifetime,which can be a useful criterion for judging if two eddies are a dipole.展开更多
The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy beco...The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature.展开更多
In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a m...In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a magnetic dipole.To make the results physically realistic,stability analysis is also carried out in this study so that we realized which solution is stable and which is not.The governing partial equations are converted into ordinary differential equations by using similarity transformations and the numerical solution is calculated by applying bvp4c function technique in MATLAB software.The effects of different physical parameters are plotted graphically and discussed according to the outcomes of results.From the present study we observe that ferromagnetic interaction parameter had a great influenced on fluid velocity and temperature distributions.It is also found from the current analysis that the first and second solutions of shrinking cylinder obtained only when we applied particular ranges values of suction parameter.The most important characteristics part of study is to analyze the skin friction coefficient and rate of heat transfer which also covered in this analysis.It reveals that both skin friction coefficient and rate of heat transfer are reduced with rising values of ferromagnetic number.A comparison has also been made to make the solution feasible.展开更多
Manipulating magnetic couplings in molecular magnets is of great importance in improving the mag-netic properties of such materials.It has been proved that by adjusting the strength of magnetic cou-plings and the arra...Manipulating magnetic couplings in molecular magnets is of great importance in improving the mag-netic properties of such materials.It has been proved that by adjusting the strength of magnetic cou-plings and the arrangement of the intermolecular magnetic dipoles,magnetic blocking can be significantly enhanced.Herein manipulating the intramolecular dipole interactions by ligand modifica-tion was attempted with the use of three closely related dinuclear Er(Ⅲ)complexes of a common chemical formula of[(COT^(R))Er(μ-CI)(THF)]_(2)(COT^(R)is monosubstituted cyclooctatetraenide dianions with R=diphenylmethylsilyl(Ph_(2)MeS)for 1,triethylsilyl(TES)for 2,and triisopropylsilyl(TIPS)for 3).Each of these complexes features a centrosymmetric dinuclear core unit with their component Er(Ⅲ)ions doubly bridged by two chloro ligands and further coordinated with a capping substituted corR ligand and a coordinated THF molecule.Magnetic studies reveal that the complexes display similar ferromagnetic couplings with comparable single-molecule magnetic behaviors.The ferromagnetic couplings dominated by the intramolecular dipole interactions are found to be 0.7614,0.7380,and 0.5635 cm^(-1)for 1,2,and 3,respectively.The angles(θ)between the magnetic easy axes and the intramolecular Er-Er lines are 24.88(2)°,25.23(1),and 31.85(5),leading to transversal dipole fields of 0.0114,0.0113,and 0.0125 T for 1,2,and 3,respectively.Although the different ligand substitution generates a sizable difference of about 7 in theθangle,the resulting difference in the dipole interactions is not sufficiently strong to cause any significant differences in their magnetic properties.Further change in theθangles to the"side-by-side"(θ=90°)or"head-to-tail"(θ=0°)arrangement of the magnetic easy axes,achievable by rational mo-lecular design,is expected to lead to molecular magnetic materials with much enhanced properties.展开更多
Tanzania is mainly subject to a bimodal rainfall pattern,characterized by two distinct seasons:the long rains,occurring from March to May,and the short rains,which typically take place from October to December(OND).Sh...Tanzania is mainly subject to a bimodal rainfall pattern,characterized by two distinct seasons:the long rains,occurring from March to May,and the short rains,which typically take place from October to December(OND).Short rains are usually less intense but still significantly influence local agriculture.Therefore,with station-based observations and reanalysis data,the current paper examines the interannual variability of OND precipitation in Tanzania from 1993 to 2022 and explores the possible impacts from El Niño–Southern Oscillation(ENSO)and the Indian Ocean Dipole(IOD)as well as the mechanisms.It is found that the Tanzania OND precipitation is above(below)normal in 1997,2006,2011,and 2019(1993,1998,2005,and 2016).The composite difference between wet(dry)years and the climatology indicates that the anomalous lower-level convergence(divergence)and upward(downward)motion are the critical circulation characters for above(below)precipitation.Further analysis indicates ENSO and the IOD are the two main oceanic systems modulating OND precipitation in Tanzania.El Niño and a positive IOD could induce easterly anomalies and weaken the Walker circulation over the Indian Ocean,consequently leading to lower-level convergence in water vapor flux,upward anomalies,and more than normal precipitation in Tanzania.In contrast,La Niña and a negative IOD produce opposite circulation anomalies and less than normal precipitation over Tanzania.Moreover,through partial correlation and Generalized Equilibrium Feedback Analysis,the individual contributions of ENSO and the IOD to circulation are investigated.It is found that although both the IOD and ENSO impact the Walker circulation,the feedback to the IOD is stronger than ENSO.These results provide critical insights into the oceanic drivers and their mechanistic pathways underlying precipitation anomalies in Tanzania.展开更多
We present an analysis of the color-dipole picture for determination of the gluon density at low-x which is obtained from the Altarelli-Martinelli equation by expansion at distinct points of expansion.The dipole cross...We present an analysis of the color-dipole picture for determination of the gluon density at low-x which is obtained from the Altarelli-Martinelli equation by expansion at distinct points of expansion.The dipole cross-sections with respect to the improved saturation model of Bartels–Golec-Biernat–Kowalski are obtained in a wide range of transverse sizes r and compared with the Golec-Biernat-Ẅu sthoff model.We find that the model gives a good description of the dipole cross-section at large r which confirms saturation and matches the perturbative QCD result at a small r due to the significant role of the running of the gluon distribution.展开更多
With the increasing accuracy requirements of satellite magnetic detection missions,reducing low-frequency noise has become a key focus of satellite magnetic cleanliness technology.Traditional satellite magnetic simula...With the increasing accuracy requirements of satellite magnetic detection missions,reducing low-frequency noise has become a key focus of satellite magnetic cleanliness technology.Traditional satellite magnetic simulation methods have matured in static magnetic dipole simulations,but there is still significant room for optimization in the simulation and computation of low-frequency magnetic dipole models.This study employs the Gauss-Newton method and Fourier transform techniques for modeling and simulating low-frequency magnetic dipoles.Compared to the traditional particle swarm optimization(PSO)algorithm,this method achieves significant improvements,with errors reaching the order of10^(-13)%under noise-free conditions and maintaining an error level of less than 0.5%under 10%noise.Additionally,the use of Fourier transform and the Gauss-Newton method enables high-precision magnetic field frequency identification and rapid computation of the dipole position and magnetic moment,greatly enhancing the computational efficiency and accuracy of the model.展开更多
Sodium-sulfur and sodium-iodine batteries are attractive due to their low cost and high capacities.However,they suffer from polysulfide/polyiodide dissolution and fast capacity decay.To solve these issues,herein,an or...Sodium-sulfur and sodium-iodine batteries are attractive due to their low cost and high capacities.However,they suffer from polysulfide/polyiodide dissolution and fast capacity decay.To solve these issues,herein,an organic species-intercalated layered MoS_(2) with oxygen-dopant(Org-MoS_(2)) was designed for the iodine encapsulation.The chemically-bonded S^(2-) from the S-Mo-S layer can not only stabilize the in situ generated I^(+) intermediate to boost the redox kinetics and deep transformations of 2I^(-)←→I_(2)←→2I^(+),but also undergo the conversion of S^(2-)←→S^(δ-) in the high voltage range of 1.5-3.4 V without structural collapse and shuttle effect.That is owning to the I^(+)-induced local charge and the electron reservoir of multi-valent Mo,which facilitate effective charge transfer via alternate dipoles of I^(δ+)-^(δ-)S^(δ+)/^(δ-)O^(δ+)-^(δ-)Mo^(δ+)-^(δ-)S^(δ+) and promote the redox of I/S/Mo.Meanwhile,the incorporated organic species are transformed into an aromatic carbonaceous material with improved electron conductivity and thinner thickness in the cycling test accompanied by the exposure of more Mo-O-Mo linkages,resulting in an increasing ultrahigh capacity and outstanding long-term durability of Org-MoS_(2)@I_(2).展开更多
Modulating the dipole polarization loss in the single-atom region and establishing its direct relationship with the electromagnetic wave absorption(EWA)performance remain an unmet challenge.Here,a dual-ligand modulati...Modulating the dipole polarization loss in the single-atom region and establishing its direct relationship with the electromagnetic wave absorption(EWA)performance remain an unmet challenge.Here,a dual-ligand modulation strategy,i.e.,partially changing coordination atoms in the single-metal region(sMr),is introduced to effectively break the coordination symmetry of conjugated metal-organic frameworks(cMOFs),finally enhancing EWA property of cMOFs materials.Further,the asymmetrical sMr is experimentally found to elicit the dipole polarization loss,overcoming the handicaps of other electromagnetic wave loss mechanisms,which directly contribution to enhance EWA performance of this series of cMOFs.This strategy is further confirmed by replacing metal centers.Among studied series of cMOFs,Cu_(2.25)/Co_(0.75)(HHTP1.67HITP0.33)achieves excellent EWA performance with an effective absorption bandwidth of 5.00 GHz and a reflection loss of66.03 dB.We introduce a dual-ligand modulation strategy targeting single-metal regions within cMOFs here,aiming to achieve superior EWA performance through atomic-scale dipole polarization loss modulation.We hope our study can inspire more exploration to realize high-performance EWA materials.展开更多
The absence of efficient ion transport pathways in composite solid-state electrolytes(CSEs)usually results in low ionic conductivity,which remains a great challenge for developing solid-state lithiummetal batteries(SL...The absence of efficient ion transport pathways in composite solid-state electrolytes(CSEs)usually results in low ionic conductivity,which remains a great challenge for developing solid-state lithiummetal batteries(SLMBs).Herein,we report achieving accelerated Li^(+)conduction in CSEs by a novel activation of the interfacial dipole layer.Polycationic ionic liquids and polyacrylonitrile with highly polar functional groups(-C≡N)are utilized to modulate the interfacial dipole layer in MOF-based CSEs,facilitating long-range pathways for the connectivity of Li^(+)conduction and enhancing rapid transport kinetics.The as-synthesized CSEs exhibit a high ionic conductivity of 0.59 mS cm^(-1)and a lithium transfer number of 0.85.The assembled SLMBs(Li/CSE/LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))delivered a high-capacity retention of 88.7%with a minimal discharge voltage attenuation of 17.1 mV after 500 cycles(0.03 mV per cycle)at0.5 C.This work offers an effective approach to creating interpenetrating lithium-ion transport pathways with rapid ion transport kinetics for solid-state electrolytes,thereby advancing the development of solidstate lithium metal batteries.展开更多
The paper is concerned with a class of elliptic equation with critical exponent and Dipole potential.More precisely,we make use of the refined Sobolev inequality with Morrey norm to obtain the existence and decay prop...The paper is concerned with a class of elliptic equation with critical exponent and Dipole potential.More precisely,we make use of the refined Sobolev inequality with Morrey norm to obtain the existence and decay properties of nonnegative radial ground state solutions.展开更多
Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground s...Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.展开更多
Electrically driven water splitting is an efficient method for green hydrogen production;however,its practical application is substantially constrained by the kinetically sluggish anodic oxygen evolution reaction(OER)...Electrically driven water splitting is an efficient method for green hydrogen production;however,its practical application is substantially constrained by the kinetically sluggish anodic oxygen evolution reaction(OER).Ruthenium(Ru)and its oxides are widely recognized as highly active OER catalysts.Although Ru is significantly cheaper than iridium(Ir),further reducing its content remains desirable.Herein,atomically dispersed Ru is doped into iron-nickel layered double hydroxides(Ru-FeNi-LDH)to decrease the Ru usage.We found that the Ru doping limit is roughly 9 wt%,and the Ru doping content significantly alters the OER kinetics-note that the high Ru concentration remarkably damages the Ru-FeNi-LDH structure and leads to agglomeration formation.By optimizing the Ru doping content to 3.3 wt%,the Ru-FeNi-LDH presents a low overpotential of 230 mV to reach a current density of 10 mA cm^(-2) in 1 M KOH,which is far better than the reference FeNi-LDH(280 mV)and RuO_(2)(350 mV).In the overall water splitting test,the current density of 10 mA cm^(-2) can be reached at a low voltage of 1.52 V,with stable operation for 80 h.Interestingly,Ru and Fe form an asymmetric Ru-Fe dipole,which is likely doped together into the LDH because the content of Fe instead of Ni is dependent on Ru content in experimental results.The electron-deficient feature of the Ru-Fe dipole thus facilitates the OER process.This work demonstrates a dual-transition metal synergy,providing a design strategy for OER and related catalysts.展开更多
This study explores the impact of winter sea surface temperature(SST)anomalies in the Southern Indian Ocean on summer precipitation patterns in China,utilizing data from reanalysis sources and Coupled Model Intercompa...This study explores the impact of winter sea surface temperature(SST)anomalies in the Southern Indian Ocean on summer precipitation patterns in China,utilizing data from reanalysis sources and Coupled Model Intercomparison Project Phase 6(CMIP6)models.The results reveal that the Southern Indian Ocean Dipole(SIOD),characterized by contrasting SST anomalies in the northeast and southwest regions,acts as a predictor for Chinese summer precipitation patterns,namely floods in the south and drought in the north.In a positive SIOD event,the southwestern Indian Ocean exhibits warmer SSTs,while the northeastern region remains cooler.A negative SIOD event shows the opposite pattern.During the positive phase of the SIOD,the winter SST distribution strengthens the 850-hPa cross-equatorial airflow,generating a robust low-level westerly jet that enhances water vapor transport to the Bay of Bengal(BoB).These air-sea interactions maintain lower SSTs in the northeastern region,which significantly increase the land-sea temperature contrast in the Northern Hemisphere during spring and summer.This strengthened thermal gradient intensifies the southwest monsoon,establishing a strong convergence zone near the South China Sea and amplifying monsoon-driven precipitation in South China.Additionally,CMIP6 models,such as NorESM2-LM and NorCPM1,which accurately simulate the SIOD pattern,effectively capture the seasonal response of cross-equatorial airflow driven by SST anomalies of Southern Indian Ocean.The result highlights the essential role of cross-equatorial airflow generated by the SIOD in forecasting crossseasonal precipitation patterns.展开更多
Polarization-dependent loss is important to the highly electromagnetic wave absorption(EWA)performance.Recently,metal–Nx moieties have been discovered to trigger polarization loss,but the physical origin and other po...Polarization-dependent loss is important to the highly electromagnetic wave absorption(EWA)performance.Recently,metal–Nx moieties have been discovered to trigger polarization loss,but the physical origin and other possible related loss mechanisms still need to be deeply explored.In this article,we reveal that the FeN_(4)moiety from iron phthalocyanine(FePc)can coordinate with Ti_(3)C_(2)T_(x)through Ti–OH groups,inducing dipole polarization and synchronous magnetic modulation in Fe/TiO_(2)/Ti_(3)C_(2)T_(x)composites.Interestingly,using the enhanced electric dipole moment and increased number of unpaired electrons in Fe atoms,the dipole polarization loss and possible magnetic response can be rapidly confirmed and evaluated.As a result,the minimum reflection loss(RLmin)of Fe/TiO_(2)/Ti_(3)C_(2)T_(x)composites reaches−67.12 dB at 6.72 GHz with a thickness of 3.32 mm.This study elaborates the EWA mechanism based on the atomic scale,and provides a new idea to design efficient EWA materials.展开更多
An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge...An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.展开更多
The variation in the Indian Ocean is investigated using Hadley center sea surface temperature(SST) data during the period 1958–2010.All the first empirical orthogonal function(EOF) modes of the SST anomalies(SST...The variation in the Indian Ocean is investigated using Hadley center sea surface temperature(SST) data during the period 1958–2010.All the first empirical orthogonal function(EOF) modes of the SST anomalies(SSTA) in different domains represent the basin-wide warming and are closely related to the Pacific El Ni o– Southern Oscillation(ENSO) phenomenon.Further examination suggests that the impact of ENSO on the tropical Indian Ocean is stronger than that on the southern Indian Ocean.The second EOF modes in different domains show different features.It shows a clear east-west SSTA dipole pattern in the tropical Indian Ocean(Indian Ocean dipole,IOD),and a southwest-northeast SSTA dipole in the southern Indian Ocean(Indian Ocean subtropical dipole,IOSD).It is further revealed that the IOSD is also the main structure of the second EOF mode on the whole basin-scale,in which the IOD pattern does not appear.A correlation analysis indicates that an IOSD event observed during the austral summer is highly correlated to the IOD event peaking about 9 months later.One of the possible physical mechanisms underlying this highly significant statistical relationship is proposed.The IOSD and the IOD can occur in sequence with the help of the Mascarene high.The SSTA in the southwestern Indian Ocean persists for several seasons after the mature phase of the IOSD event,likely due to the positive wind–evaporation–SST feedback mechanism.The Mascarene high will be weakened or intensified by this SSTA,which can affect the atmosphere in the tropical region by teleconnection.The pressure gradient between the Mascarene high and the monsoon trough in the tropical Indian Ocean increases(decreases).Hence,an anticyclone(cyclone) circulation appears over the Arabian Sea-India continent.The easterly or westerly anomalies appear in the equatorial Indian Ocean,inducing the onset stage of the IOD.This study shows that the SSTA associated with the IOSD can lead to the onset of IOD with the aid of atmosphere circulation and also explains why some IOD events in the tropical tend to be followed by IOSD in the southern Indian Ocean.展开更多
基金supported by the National Natural Science Foundation of China[grant numbers 41975087,U2242212,and 41975085]supported by the National Natural Science Foundation of China[grant number U2242212]。
文摘Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.
基金supported by the National Natural Science Foundation of China(Grant No.42388101)the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC00103)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(IGGCAS-202102).
文摘Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed dataset of the magnetic field.However,the simultaneous fitting of these parameters often leads to multiple local optimal parameter sets.To address this fitting dilemma,Rong ZJ et al.(2021)recently developed a current loop model.This technique can successively separate and invert the loop parameters.Here,we further show how this technique can be reduced and modified to fit a dipole model.Applications of this reduced technique to the International Geomagnetic Reference Field model and the Martian crustal field model highlight its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly,a capability that sets it apart from existing methods.The potential impact of this technique on geomagnetism and planetary magnetism is significant,given its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly.
基金Supported by the National Natural Science Foundation of China(No.42250710152)the Jiangsu Province Graduate Innovation and Entrepreneurship Project(No.KYCX22_1171)the National Key Research and Development Program of China(No.2023YFC3008200)。
文摘A cyclonic eddy(CE)is often accompanied by an anticyclonic eddy(AE)to the east of Vietnam in the South China Sea(SCS)in summer,but the dipole lifetime and the intrinsic connection between CE and AE are still understudied.Data from 1993-2021 reveal that the dipole lifetime are significantly correlated with the wind direction and speed in the dipole region.Higher wind speed was found to be associated with more eastward wind direction and tends to longer dipole lifetime.The wind stress work(WW)on the eddy is much stronger in the eastward jet region than in the CE and AE regions.Comparing of results of 12 higher and lower wind speed years reveal that higher wind can produce stronger mean current,WW and barotropic instability(T4)that further enhances eddy kinetic energy(EKE)and dipole lifetime.The correlations between the dipole CE and AE characteristics are insignificant on interannual scales and mostly insignificant on seasonal scales in the surface layer but significant on seasonal scales in the subsurface layers.In addition,the daily mean vertical profiles(0-500 m)of EKE,vorticity and total deformation rate(TD)between CE and AE remain significantly correlated throughout the dipole’s lifetime,which can be a useful criterion for judging if two eddies are a dipole.
基金National Natural Science Foundation of China(U2241242)National Key R&D Program of China(2023YFB3812000,2021YFA0716502)。
文摘The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature.
文摘In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a magnetic dipole.To make the results physically realistic,stability analysis is also carried out in this study so that we realized which solution is stable and which is not.The governing partial equations are converted into ordinary differential equations by using similarity transformations and the numerical solution is calculated by applying bvp4c function technique in MATLAB software.The effects of different physical parameters are plotted graphically and discussed according to the outcomes of results.From the present study we observe that ferromagnetic interaction parameter had a great influenced on fluid velocity and temperature distributions.It is also found from the current analysis that the first and second solutions of shrinking cylinder obtained only when we applied particular ranges values of suction parameter.The most important characteristics part of study is to analyze the skin friction coefficient and rate of heat transfer which also covered in this analysis.It reveals that both skin friction coefficient and rate of heat transfer are reduced with rising values of ferromagnetic number.A comparison has also been made to make the solution feasible.
基金the National Natural Science Foundation of China(92261203,22101116,21971106)the Science Research Foun dation of jilin Province(YDZJ202301ZYTS478)。
文摘Manipulating magnetic couplings in molecular magnets is of great importance in improving the mag-netic properties of such materials.It has been proved that by adjusting the strength of magnetic cou-plings and the arrangement of the intermolecular magnetic dipoles,magnetic blocking can be significantly enhanced.Herein manipulating the intramolecular dipole interactions by ligand modifica-tion was attempted with the use of three closely related dinuclear Er(Ⅲ)complexes of a common chemical formula of[(COT^(R))Er(μ-CI)(THF)]_(2)(COT^(R)is monosubstituted cyclooctatetraenide dianions with R=diphenylmethylsilyl(Ph_(2)MeS)for 1,triethylsilyl(TES)for 2,and triisopropylsilyl(TIPS)for 3).Each of these complexes features a centrosymmetric dinuclear core unit with their component Er(Ⅲ)ions doubly bridged by two chloro ligands and further coordinated with a capping substituted corR ligand and a coordinated THF molecule.Magnetic studies reveal that the complexes display similar ferromagnetic couplings with comparable single-molecule magnetic behaviors.The ferromagnetic couplings dominated by the intramolecular dipole interactions are found to be 0.7614,0.7380,and 0.5635 cm^(-1)for 1,2,and 3,respectively.The angles(θ)between the magnetic easy axes and the intramolecular Er-Er lines are 24.88(2)°,25.23(1),and 31.85(5),leading to transversal dipole fields of 0.0114,0.0113,and 0.0125 T for 1,2,and 3,respectively.Although the different ligand substitution generates a sizable difference of about 7 in theθangle,the resulting difference in the dipole interactions is not sufficiently strong to cause any significant differences in their magnetic properties.Further change in theθangles to the"side-by-side"(θ=90°)or"head-to-tail"(θ=0°)arrangement of the magnetic easy axes,achievable by rational mo-lecular design,is expected to lead to molecular magnetic materials with much enhanced properties.
基金supported by the National Natural Science Foundation of China[grant numbers 42105030 and 42105066]the Ministry of Commerce,People’s Republic of China.
文摘Tanzania is mainly subject to a bimodal rainfall pattern,characterized by two distinct seasons:the long rains,occurring from March to May,and the short rains,which typically take place from October to December(OND).Short rains are usually less intense but still significantly influence local agriculture.Therefore,with station-based observations and reanalysis data,the current paper examines the interannual variability of OND precipitation in Tanzania from 1993 to 2022 and explores the possible impacts from El Niño–Southern Oscillation(ENSO)and the Indian Ocean Dipole(IOD)as well as the mechanisms.It is found that the Tanzania OND precipitation is above(below)normal in 1997,2006,2011,and 2019(1993,1998,2005,and 2016).The composite difference between wet(dry)years and the climatology indicates that the anomalous lower-level convergence(divergence)and upward(downward)motion are the critical circulation characters for above(below)precipitation.Further analysis indicates ENSO and the IOD are the two main oceanic systems modulating OND precipitation in Tanzania.El Niño and a positive IOD could induce easterly anomalies and weaken the Walker circulation over the Indian Ocean,consequently leading to lower-level convergence in water vapor flux,upward anomalies,and more than normal precipitation in Tanzania.In contrast,La Niña and a negative IOD produce opposite circulation anomalies and less than normal precipitation over Tanzania.Moreover,through partial correlation and Generalized Equilibrium Feedback Analysis,the individual contributions of ENSO and the IOD to circulation are investigated.It is found that although both the IOD and ENSO impact the Walker circulation,the feedback to the IOD is stronger than ENSO.These results provide critical insights into the oceanic drivers and their mechanistic pathways underlying precipitation anomalies in Tanzania.
文摘We present an analysis of the color-dipole picture for determination of the gluon density at low-x which is obtained from the Altarelli-Martinelli equation by expansion at distinct points of expansion.The dipole cross-sections with respect to the improved saturation model of Bartels–Golec-Biernat–Kowalski are obtained in a wide range of transverse sizes r and compared with the Golec-Biernat-Ẅu sthoff model.We find that the model gives a good description of the dipole cross-section at large r which confirms saturation and matches the perturbative QCD result at a small r due to the significant role of the running of the gluon distribution.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC2206003)。
文摘With the increasing accuracy requirements of satellite magnetic detection missions,reducing low-frequency noise has become a key focus of satellite magnetic cleanliness technology.Traditional satellite magnetic simulation methods have matured in static magnetic dipole simulations,but there is still significant room for optimization in the simulation and computation of low-frequency magnetic dipole models.This study employs the Gauss-Newton method and Fourier transform techniques for modeling and simulating low-frequency magnetic dipoles.Compared to the traditional particle swarm optimization(PSO)algorithm,this method achieves significant improvements,with errors reaching the order of10^(-13)%under noise-free conditions and maintaining an error level of less than 0.5%under 10%noise.Additionally,the use of Fourier transform and the Gauss-Newton method enables high-precision magnetic field frequency identification and rapid computation of the dipole position and magnetic moment,greatly enhancing the computational efficiency and accuracy of the model.
基金supported by the National Natural Science Foundation of China (22171030 and 21771028)the Large-Scale Instrument and Equipment Open Foundation in Chongqing University (202303150030)。
文摘Sodium-sulfur and sodium-iodine batteries are attractive due to their low cost and high capacities.However,they suffer from polysulfide/polyiodide dissolution and fast capacity decay.To solve these issues,herein,an organic species-intercalated layered MoS_(2) with oxygen-dopant(Org-MoS_(2)) was designed for the iodine encapsulation.The chemically-bonded S^(2-) from the S-Mo-S layer can not only stabilize the in situ generated I^(+) intermediate to boost the redox kinetics and deep transformations of 2I^(-)←→I_(2)←→2I^(+),but also undergo the conversion of S^(2-)←→S^(δ-) in the high voltage range of 1.5-3.4 V without structural collapse and shuttle effect.That is owning to the I^(+)-induced local charge and the electron reservoir of multi-valent Mo,which facilitate effective charge transfer via alternate dipoles of I^(δ+)-^(δ-)S^(δ+)/^(δ-)O^(δ+)-^(δ-)Mo^(δ+)-^(δ-)S^(δ+) and promote the redox of I/S/Mo.Meanwhile,the incorporated organic species are transformed into an aromatic carbonaceous material with improved electron conductivity and thinner thickness in the cycling test accompanied by the exposure of more Mo-O-Mo linkages,resulting in an increasing ultrahigh capacity and outstanding long-term durability of Org-MoS_(2)@I_(2).
基金supported by the National Natural Science Foundation of China(52172091,52172295)Defense Industrial Technology Development Program(JCKY2023605C002)+3 种基金Basic Research Program of Jiangsu(BK20232013)the National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering(NO.61422062301)The Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0371,KYCX24_0571,KYCX25_0602)Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(ZHD202305).
文摘Modulating the dipole polarization loss in the single-atom region and establishing its direct relationship with the electromagnetic wave absorption(EWA)performance remain an unmet challenge.Here,a dual-ligand modulation strategy,i.e.,partially changing coordination atoms in the single-metal region(sMr),is introduced to effectively break the coordination symmetry of conjugated metal-organic frameworks(cMOFs),finally enhancing EWA property of cMOFs materials.Further,the asymmetrical sMr is experimentally found to elicit the dipole polarization loss,overcoming the handicaps of other electromagnetic wave loss mechanisms,which directly contribution to enhance EWA performance of this series of cMOFs.This strategy is further confirmed by replacing metal centers.Among studied series of cMOFs,Cu_(2.25)/Co_(0.75)(HHTP1.67HITP0.33)achieves excellent EWA performance with an effective absorption bandwidth of 5.00 GHz and a reflection loss of66.03 dB.We introduce a dual-ligand modulation strategy targeting single-metal regions within cMOFs here,aiming to achieve superior EWA performance through atomic-scale dipole polarization loss modulation.We hope our study can inspire more exploration to realize high-performance EWA materials.
基金financially supported by the National Natural Science Foundation of China(22408239)the National Natural Science Foundation of China(51904193)+3 种基金the Sichuan Science and Technology Program(2024NSFSC0987)the Fundamental Research Funds for the Central Universities(No.YJ202280)support from the Australian Research Council(ARC)through the ARC Linkage project(LP200200926)ARC Discover project(DP240102176)。
文摘The absence of efficient ion transport pathways in composite solid-state electrolytes(CSEs)usually results in low ionic conductivity,which remains a great challenge for developing solid-state lithiummetal batteries(SLMBs).Herein,we report achieving accelerated Li^(+)conduction in CSEs by a novel activation of the interfacial dipole layer.Polycationic ionic liquids and polyacrylonitrile with highly polar functional groups(-C≡N)are utilized to modulate the interfacial dipole layer in MOF-based CSEs,facilitating long-range pathways for the connectivity of Li^(+)conduction and enhancing rapid transport kinetics.The as-synthesized CSEs exhibit a high ionic conductivity of 0.59 mS cm^(-1)and a lithium transfer number of 0.85.The assembled SLMBs(Li/CSE/LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))delivered a high-capacity retention of 88.7%with a minimal discharge voltage attenuation of 17.1 mV after 500 cycles(0.03 mV per cycle)at0.5 C.This work offers an effective approach to creating interpenetrating lithium-ion transport pathways with rapid ion transport kinetics for solid-state electrolytes,thereby advancing the development of solidstate lithium metal batteries.
基金supported by the Natural Science Research Project of Anhui Educational Committee(2023AH040155)Zhisu Liu's research was supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011679+2 种基金2024A1515012704)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUG2106211CUGST2).
文摘The paper is concerned with a class of elliptic equation with critical exponent and Dipole potential.More precisely,we make use of the refined Sobolev inequality with Morrey norm to obtain the existence and decay properties of nonnegative radial ground state solutions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174026)。
文摘Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.
基金supported by Guangdong Basic and Applied Basic Research Foundation(2022B1515120079)Tertiary Education Scientific research project of Guangzhou Municipal Education Bureau(2024312194)+1 种基金the Science and Technology Projects in Guangzhou(2024A03J0308)the Outstanding Youth Project of Natural Science Foundation of Guangdong Province(2022B1515020020).
文摘Electrically driven water splitting is an efficient method for green hydrogen production;however,its practical application is substantially constrained by the kinetically sluggish anodic oxygen evolution reaction(OER).Ruthenium(Ru)and its oxides are widely recognized as highly active OER catalysts.Although Ru is significantly cheaper than iridium(Ir),further reducing its content remains desirable.Herein,atomically dispersed Ru is doped into iron-nickel layered double hydroxides(Ru-FeNi-LDH)to decrease the Ru usage.We found that the Ru doping limit is roughly 9 wt%,and the Ru doping content significantly alters the OER kinetics-note that the high Ru concentration remarkably damages the Ru-FeNi-LDH structure and leads to agglomeration formation.By optimizing the Ru doping content to 3.3 wt%,the Ru-FeNi-LDH presents a low overpotential of 230 mV to reach a current density of 10 mA cm^(-2) in 1 M KOH,which is far better than the reference FeNi-LDH(280 mV)and RuO_(2)(350 mV).In the overall water splitting test,the current density of 10 mA cm^(-2) can be reached at a low voltage of 1.52 V,with stable operation for 80 h.Interestingly,Ru and Fe form an asymmetric Ru-Fe dipole,which is likely doped together into the LDH because the content of Fe instead of Ni is dependent on Ru content in experimental results.The electron-deficient feature of the Ru-Fe dipole thus facilitates the OER process.This work demonstrates a dual-transition metal synergy,providing a design strategy for OER and related catalysts.
基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)National Natural Science Foundation of China(U2442202)+1 种基金Key Innovation Team of China Meteorological Administration“Climate Change Detection and Response”(CMA2022ZD03)National Key Research and Development Program of China(2023YFF0805104)。
文摘This study explores the impact of winter sea surface temperature(SST)anomalies in the Southern Indian Ocean on summer precipitation patterns in China,utilizing data from reanalysis sources and Coupled Model Intercomparison Project Phase 6(CMIP6)models.The results reveal that the Southern Indian Ocean Dipole(SIOD),characterized by contrasting SST anomalies in the northeast and southwest regions,acts as a predictor for Chinese summer precipitation patterns,namely floods in the south and drought in the north.In a positive SIOD event,the southwestern Indian Ocean exhibits warmer SSTs,while the northeastern region remains cooler.A negative SIOD event shows the opposite pattern.During the positive phase of the SIOD,the winter SST distribution strengthens the 850-hPa cross-equatorial airflow,generating a robust low-level westerly jet that enhances water vapor transport to the Bay of Bengal(BoB).These air-sea interactions maintain lower SSTs in the northeastern region,which significantly increase the land-sea temperature contrast in the Northern Hemisphere during spring and summer.This strengthened thermal gradient intensifies the southwest monsoon,establishing a strong convergence zone near the South China Sea and amplifying monsoon-driven precipitation in South China.Additionally,CMIP6 models,such as NorESM2-LM and NorCPM1,which accurately simulate the SIOD pattern,effectively capture the seasonal response of cross-equatorial airflow driven by SST anomalies of Southern Indian Ocean.The result highlights the essential role of cross-equatorial airflow generated by the SIOD in forecasting crossseasonal precipitation patterns.
基金supported by the Taishan Young Scholar Program(tsqn202306267)the National Natural Science Foundation of China(51802168)the Natural Science Foundation of Shandong Province(ZR2024ME182,ZR2021ME122)。
文摘Polarization-dependent loss is important to the highly electromagnetic wave absorption(EWA)performance.Recently,metal–Nx moieties have been discovered to trigger polarization loss,but the physical origin and other possible related loss mechanisms still need to be deeply explored.In this article,we reveal that the FeN_(4)moiety from iron phthalocyanine(FePc)can coordinate with Ti_(3)C_(2)T_(x)through Ti–OH groups,inducing dipole polarization and synchronous magnetic modulation in Fe/TiO_(2)/Ti_(3)C_(2)T_(x)composites.Interestingly,using the enhanced electric dipole moment and increased number of unpaired electrons in Fe atoms,the dipole polarization loss and possible magnetic response can be rapidly confirmed and evaluated.As a result,the minimum reflection loss(RLmin)of Fe/TiO_(2)/Ti_(3)C_(2)T_(x)composites reaches−67.12 dB at 6.72 GHz with a thickness of 3.32 mm.This study elaborates the EWA mechanism based on the atomic scale,and provides a new idea to design efficient EWA materials.
基金supported by Chinese National Programs for Fundamental Research and Development(No.2012CB416605)the National Natural Science Foundation of China(No.41174090)Development Project of National Key Scientific Equipment(No.ZDYZ2012-1-05-04)
文摘An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.
基金The National Natural Science Foundation of China under contract Nos 41106016 and 41330963the National Basic Research Program(973 Program)of China under contract No.2012CB417403
文摘The variation in the Indian Ocean is investigated using Hadley center sea surface temperature(SST) data during the period 1958–2010.All the first empirical orthogonal function(EOF) modes of the SST anomalies(SSTA) in different domains represent the basin-wide warming and are closely related to the Pacific El Ni o– Southern Oscillation(ENSO) phenomenon.Further examination suggests that the impact of ENSO on the tropical Indian Ocean is stronger than that on the southern Indian Ocean.The second EOF modes in different domains show different features.It shows a clear east-west SSTA dipole pattern in the tropical Indian Ocean(Indian Ocean dipole,IOD),and a southwest-northeast SSTA dipole in the southern Indian Ocean(Indian Ocean subtropical dipole,IOSD).It is further revealed that the IOSD is also the main structure of the second EOF mode on the whole basin-scale,in which the IOD pattern does not appear.A correlation analysis indicates that an IOSD event observed during the austral summer is highly correlated to the IOD event peaking about 9 months later.One of the possible physical mechanisms underlying this highly significant statistical relationship is proposed.The IOSD and the IOD can occur in sequence with the help of the Mascarene high.The SSTA in the southwestern Indian Ocean persists for several seasons after the mature phase of the IOSD event,likely due to the positive wind–evaporation–SST feedback mechanism.The Mascarene high will be weakened or intensified by this SSTA,which can affect the atmosphere in the tropical region by teleconnection.The pressure gradient between the Mascarene high and the monsoon trough in the tropical Indian Ocean increases(decreases).Hence,an anticyclone(cyclone) circulation appears over the Arabian Sea-India continent.The easterly or westerly anomalies appear in the equatorial Indian Ocean,inducing the onset stage of the IOD.This study shows that the SSTA associated with the IOSD can lead to the onset of IOD with the aid of atmosphere circulation and also explains why some IOD events in the tropical tend to be followed by IOSD in the southern Indian Ocean.