Neural EGFL-like 2(NELL2)is a secreted protein known for its regulatory functions in the nervous and reproductive systems,yet its role in bone biology remains unexplored.In this study,we observed that NELL2 was dimini...Neural EGFL-like 2(NELL2)is a secreted protein known for its regulatory functions in the nervous and reproductive systems,yet its role in bone biology remains unexplored.In this study,we observed that NELL2 was diminished in the bone of aged and ovariectomized(OVX)mice,as well as in the serum of osteopenia and osteoporosis patients.In vitro loss-of-function and gain-offunction studies revealed that NELL2 facilitated osteoblast differentiation and impeded adipocyte differentiation from stromal progenitor cells.In vivo studies further demonstrated that the deletion of NELL2 in preosteoblasts resulted in decreased cancellous bone mass in mice.Mechanistically,NELL2 interacted with the FNI-type domain located at the C-terminus of Fibronectin 1(Fn1).Moreover,we found that NELL2 activated the focal adhesion kinase(FAK)/AKT signaling pathway through Fn1/integrinβ1(ITGB1),leading to the promotion of osteogenesis and the inhibition of adipogenesis.Notably,administration of NELL2-AAV was found to ameliorate bone loss in OVX mice.These findings underscore the significant role of NELL2 in osteoblast differentiation and bone homeostasis,suggesting its potential as a therapeutic target for managing osteoporosis.展开更多
Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infr...Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infrared light promotes adipose stem cell proliferation and affects adipose stem cell migration,which is necessary for the cells homing to the site of injury.In this in vitro study,we explored the potential of adipose-derived stem cells to differentiate into neurons for future translational regenerative treatments in neurodegenerative disorders and brain injuries.We investigated the effects of various biological and chemical inducers on trans-differentiation and evaluated the impact of photobiomodulation using 825 nm near-infrared and 525 nm green laser light at 5 J/cm2.As adipose-derived stem cells can be used in autologous grafting and photobiomodulation has been shown to have biostimulatory effects.Our findings reveal that adipose-derived stem cells can indeed trans-differentiate into neuronal cells when exposed to inducers,with pre-induced cells exhibiting higher rates of proliferation and trans-differentiation compared with the control group.Interestingly,green laser light stimulation led to notable morphological changes indicative of enhanced trans-differentiation,while near-infrared photobiomodulation notably increased the expression of neuronal markers.Through biochemical analysis and enzyme-linked immunosorbent assays,we observed marked improvements in viability,proliferation,membrane permeability,and mitochondrial membrane potential,as well as increased protein levels of neuron-specific enolase and ciliary neurotrophic factor.Overall,our results demonstrate the efficacy of photobiomodulation in enhancing the trans-differentiation ability of adipose-derived stem cells,offering promising prospects for their use in regenerative medicine for neurodegenerative disorders and brain injuries.展开更多
The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis.Nuclear receptors(NRs)are now understood to be crucial in bone physiology and pathology.However,...The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis.Nuclear receptors(NRs)are now understood to be crucial in bone physiology and pathology.However,the function of the Farnesoid X receptor(FXR),a member of the NR family,in regulating bone homeostasis remains incompletely understood.In this study,in vitro and in vivo models revealed delayed bone development and an osteoporosis phenotype in mice lacking FXR in bone marrow mesenchymal stem cells(BMSCs)and osteoblasts due to impaired osteoblast differentiation.Mechanistically,FXR could stabilize RUNX2 by inhibiting Thoc6-mediated ubiquitination,thereby promoting osteogenic activity in BMSCs.Moreover,activated FXR could directly bind to the Thoc6 promoter,suppressing its expression.The interaction between RUNX2 and Thoc6 was mediated by the Runt domain of RUNX2 and the WD repeat of Thoc6.Additionally,Obeticholic acid(OCA),an orally available FXR agonist,could ameliorate bone loss in an ovariectomy(OVX)-induced osteoporotic mouse model.Taken together,our findings suggest that FXR plays pivotal roles in osteoblast differentiation by regulating RUNX2 stability and that targeting FXR may be a promising therapeutic approach for osteoporosis.展开更多
Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant...Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders.展开更多
It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases ...It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.展开更多
Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characteri...Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation.展开更多
The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu...The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.展开更多
Chorionic gonadotropinα(Cgα)functions as the shared subunit for thyroid-stimulating hormone subunitβ(Tshβ),luteinizing hormone subunitβ(Lhβ),and follicle-stimulating hormone subunitβ(Fshβ).While theseβ-subuni...Chorionic gonadotropinα(Cgα)functions as the shared subunit for thyroid-stimulating hormone subunitβ(Tshβ),luteinizing hormone subunitβ(Lhβ),and follicle-stimulating hormone subunitβ(Fshβ).While theseβ-subunits have been extensively studied using effective gene knockout models in zebrafish,the biological role of Cgαremains elusive.In this study,cgα-deficient zebrafish generated via transcription activator-like effector nucleases(TALENs)exhibited viability but displayed pronounced developmental abnormalities,including growth retardation,hyperpigmentation,reduced thyroxine(T4)levels,and defective anterior swim bladder inflation during juvenile stages.In adults,cgαdeficiency led to disrupted gonadal development,impaired secondary sex characteristics(SSCs),and severely impacted reproductive behavior in both female and male fish.Notably,both testicular and ovarian differentiation were observed in cgα-deficient fish and lhβ^(−/−);fshβ^(−/−)mutants.Gonadal sex differentiation in cgα-deficient zebrafish exhibited a pronounced shift toward testicular fate upon additional disruption of fshβ(cgα^(−/−);fshβ^(−/−)),marked by elevated anti-Müllerian hormone(amh)expression,or following loss of follicle-stimulating hormone receptor(fshr)(cgα^(−/−);fshr^(−/−)).In vitro assays in Chinese hamster ovary(CHO)cells revealed increased cAMP response element(CRE)promoter activity following transfection with constructs encoding Fshr,Fshβ/Fshr,or Cgα/Fshβ/Fshr.Collectively,the phenotypes observed in cgα-deficient fish recapitulate those of thyrotropin-and gonadotropin-disrupted models,highlighting the essential role of Cgαin thyroid and gonadal function.Importantly,these findings uncover the role of Fsh signaling in maintaining proper ovarian differentiation in zebrafish,including Cgα-independent Fshβactivity and the constitutive functionality of Fshr.展开更多
BACKGROUND Gastric adenocarcinoma with enteroblastic differentiation(GAED)is one of the common subtypes of alpha-foetoprotein(AFP)-producing gastric cancer.GAED frequently results in venous invasion and liver metastas...BACKGROUND Gastric adenocarcinoma with enteroblastic differentiation(GAED)is one of the common subtypes of alpha-foetoprotein(AFP)-producing gastric cancer.GAED frequently results in venous invasion and liver metastasis,the latter being particularly linked to a poor prognosis.So far,the evidence for liver metastases from AFP-producing gastric cancer is only focused on those from gastric hepatoid adenocarcinoma,owing to their imaging similarities with hepatocellular carcinoma.This case report describes the characteristic diagnostic imaging findings of liver metastasis from GAED.CASE SUMMARY A 65-year-old man who had undergone a pyloric gastrectomy for GAED two years ago was found to have a liver tumor in the hepatic segment 7,accompanied by elevated serum AFP levels.Dynamic contrast-enhanced computed tomography revealed the tumor showing peripheral-dominant enhancement in the arterial phase with persistent central enhancement in the delayed phase.Gadoliniumethoxybenzyl-diethylenetriamine penta-acetic acid-enhanced magnetic resonance imaging demonstrated a signal drop in the tumor periphery in chemical shift imaging,along with arterial enhancement.Additionally,rim-like hypointensity surrounding the tumor was observed in the hepatobiliary phase.Postresection examination confirmed the tumor to be a metastasis from GAED.Histopathological examination revealed severe invasion of the tumor into the portal vein and hepatic vein surrounding the tumor,which explained the imaging features.CONCLUSION The imaging features of blood flow alternations resulting from vascular invasion may be crucial to diagnosing liver metastases from GAED.展开更多
BACKGROUND Sepsis-associated encephalopathy(SAE)is a common complication of sepsis,characterized by cognitive impairment,altered consciousness,and psychiatric symptoms,including anxiety and depression.These psychiatri...BACKGROUND Sepsis-associated encephalopathy(SAE)is a common complication of sepsis,characterized by cognitive impairment,altered consciousness,and psychiatric symptoms,including anxiety and depression.These psychiatric symptoms often exacerbate the overall prognosis and quality of life of affected patients.However,the underlying metabolic and proteomic features associated with SAE-induced psychiatric symptoms remain poorly understood.AIM To investigate the clinical manifestations of anxiety and depression in patients with sepsis and SAE and to explore their associated metabolic and proteomic characteristics.METHODS A total of 88 patients were enrolled,comprising 30 healthy controls,29 patients with sepsis,and 29 with SAE.Anxiety and depression symptoms were evaluated using the Hamilton anxiety rating scale(HAM-A)and Hamilton depression rating scale(HAM-D)in sepsis and SAE.Cognitive function was assessed using the Montreal Cognitive Assessment(MoCA),and quality of life was measured using the 36-Item Short Form Health Survey.Plasma samples were analyzed for metabolomic and proteomic profiling.Metabolic alterations were identified through liquid chromatography-mass spectrometry,while protein expression was assessed using Olink targeted proteomics.RESULTS Compared to the sepsis group,patients with SAE exhibited significantly higher levels of anxiety(HAM-A:15.2±4.0 vs 10.4±3.0,P=0.012)and depression(HAM-D:16.0±3.5 vs 9.1±2.3,P=0.003).Cognitive function,as measured by MoCA,was notably impaired in the SAE group(MoCA:18.5±4.0 vs 24.5±3.2,P=0.007).Quality of life scores,particularly in physical functioning,emotional well-being,and mental health,were significantly lower in patients with SAE.Metabolomic and proteomic analyses revealed substantial alterations in oxidative stress and nicotinamide adenine dinucleotide(NAD+)metabolism pathways,with cluster of differentiation(CD)38 emerging as a potential biomarker associated with psychiatric symptoms in SAE.Further validation in an independent cohort confirmed the diagnostic relevance of CD38.CONCLUSION This study highlights the significant psychological burden of SAE,manifested as anxiety and depression.Multiomics analysis identified distinct metabolic alterations,particularly in NAD+metabolism,that may contribute to psychiatric symptom development and progression.Furthermore,CD38 was identified as a promising biomarker for the early detection of SAE,providing potential avenues for early intervention and therapeutic targeting.展开更多
Chinese dwarf cherry(Cerasus humilis)is a fruit unique to China,which is considered to have osteoprotective effects.However,no systematic experimental characterization was available.In this study,the osteoprotective a...Chinese dwarf cherry(Cerasus humilis)is a fruit unique to China,which is considered to have osteoprotective effects.However,no systematic experimental characterization was available.In this study,the osteoprotective activity and mechanism of Chinese dwarf cherry polyphenol extract(OPE)was studied.In vitro,OPE stimulated the alkaline phosphatase activity in the early differentiation stage,increased the osteocalcin level in the middle differentiation stage,and induced the formation of more bonemineralized nodules in the late osteogenic stage.In vivo,OPE improved cancellous bone structure and maximum load of the femur in ovariectomized(OVX)rats.The balance between bone formation and resorption was regulated.Oxidative stress levels in the peripheral blood,liver and femur were reduced.OPE alleviated the disturbance in energy metabolism,muscle development,and muscle regulation-related signaling pathways caused by OVX and activated the calcium/adenosine monophosphate-activated protein kinase signaling pathway.Therefore,OPE is a potential dietary supplement for the prevention and treatment of osteoporosis.展开更多
BACKGROUND Type 1 diabetes(T1D)results from the autoimmune-mediated loss of pancreatic β-cells.Current insulin therapies offer symptomatic relief but fall short of providing a definitive cure.Islet cell transplantati...BACKGROUND Type 1 diabetes(T1D)results from the autoimmune-mediated loss of pancreatic β-cells.Current insulin therapies offer symptomatic relief but fall short of providing a definitive cure.Islet cell transplantation,while promising,faces limitations related to donor scarcity,procedural complexities,and the necessity for long-term immunosuppression.Consequently,there is an urgent need for innovative strategies aimed at β-cell regeneration.Patient-derived induced pluripotent stem cells(iPSCs),obtained from peripheral blood mononuclear cells(PBMCs)of T1D patients,hold great potential as a source of cells for therapeutic purposes.Therefore,the differentiation of T1D-iPSCs into functional pancreatic β-cells is a critical step toward effective β-cell replacement therapy.AIM To assess the potential of patient-derived T1D-β-like cells(differentiated from T1D-iPSCs reprogrammed from T1D-PBMCs)for restoring β-cell function in T1D.METHODS T1D-iPSCs were reprogrammed from T1D-PBMCs using an episomal vectorbased approach.Pluripotency was confirmed by flow cytometry(FCM),quantitative real-time polymerase chain reaction,genomic stability analysis,and teratoma formation assays.Differentiation into pancreatic β-cells was optimized using triiodothyronine(T3),vitamin C(Vc),and an adenovirus(M3C)encoding pancreatic duodenal homeobox-1,neurogenin 3(Ngn3),and MAF bZIP transcription factor A(MafA).Following characterization of β-cell features by immunofluorescence,quantitative real-time polymerase chain reaction,and flow cytometry,therapeutic efficacy was assessed through blood glucose monitoring after transplantation under the renal capsule of streptozotocin-induced diabetic mice.RESULTS T1D-iPSCs were successfully generated from T1D-PBMCs.These cells exhibited the hallmark characteristics of pluripotent stem cells,including appropriate morphology,differentiation potential,genomic integrity,and expression of pluripotency-associated genes.Differentiation yielded insulin-positive(insulin+)pancreatic β-like cells that,at the mRNA level,expressed key β-cell markers such as pancreatic duodenal homeobox-1,Ngn3,MafA,NeuroD,glucagon-like peptide-1 receptor,Nkx6.1,glucose transporter 2,and Kir6.2.Notably,the T3+Vc group displayed the lowest Ngn3 expression(1.31±0.38 vs 1.96±0.25 vs 2.51±0.24,P<0.01),while the M3C+T3+Vc group exhibited the highest MafA expression(0.49±0.11 vs 0.32±0.06 vs 0.29±0.08,P<0.05).Both in vitro and in vivo assessments confirmed the insulin secretion ability of the generated β-like cells;however,they did not demonstrate appropriate modulation of insulin release in response to variations in extracellular glucose concentrations.CONCLUSION T1D-iPSCs derived from T1D-PBMCs can be differentiated into insulin+β-like cells,albeit with functional immaturity.These cells represent a potential source of seed cells for β-cell replacement therapy in T1D.展开更多
Transition metal carbonates(TMCs)hold great potential as high-performance electrodes for alkali metal-ion batteries,owing to multiple-ion storage mechanisms involving conversion process and electrocatalytic reaction.H...Transition metal carbonates(TMCs)hold great potential as high-performance electrodes for alkali metal-ion batteries,owing to multiple-ion storage mechanisms involving conversion process and electrocatalytic reaction.However,they still suffer from inferior electronic conductivity and volume variation during delithiation/lithiation.Heterostructure and heteroatoms doping offer immense promise in enhancing reaction kinetics and structural integrity,which unfortunately have not been achieved in TMCs.Herein,a unique TMCs heterostructure with Ni-doped MnCO_(3)as“core”and Mn-doped NiCO_(3)as“shell”,which is wrapped by graphene(NM@MN/RGO),is achieved by cations differentiation strategy.The formation process for core-shell NM@MN consists of epitaxial growth of NiCO_(3)from MnCO_(3)and synchronously mutual doping,owing to the similar crystal structures but different solubility product constant/formation energy of MnCO_(3)and NiCO_(3).In-situ electrochemical impedance spectroscopy,galvanostatic intermittent titration technique,differential capacity versus voltage plots,theoretical calculation and kinetic analysis reveal the superior electrochemical activity of the NM@MN/RGO to MnCO_(3)/RGO.The NM@MN/RGO shows excellent lithium storage properties(1013.4 mAh·g^(-1)at 0.1 A·g^(-1)and 760 mAh·g^(-1)after 1000 cycles at 2 A·g^(-1))and potassium storage properties(capacity decay rate of 0.114 mAh·g^(-1)per cycle).This work proposes an efficient cation differentiation strategy for constructing advanced TMC electrodes.展开更多
BACKGROUND This study analyzed the dental follicle and alveolar bone of two patients with tooth eruption disorders,aiming to provide some reference for exploring the etiology and selecting treatment plans of this dise...BACKGROUND This study analyzed the dental follicle and alveolar bone of two patients with tooth eruption disorders,aiming to provide some reference for exploring the etiology and selecting treatment plans of this disease from the perspective of the influence of extracellular matrix on osteoclasts differentiation in dental follicle.CASE SUMMARY Collect dental follicle and alveolar bone tissue from one patient with single tooth eruption disorder and one patient with full permanent tooth eruption disorder,respectively.Simultaneously collect the dental follicle and alveolar bone tissue of obstructed teeth that need to be extracted due to orthodontic treatment as the control group.Hematoxylin and eosin(HE)staining was used to observe the morphology of dental follicle cells.Immunohistochemical staining was used to observe the expression of periostin,receptor activator of nuclear factor kappa B ligand(RANKL),and osteoprotegerin(OPG)protein in dental follicle and alveolar bone tissue.And observe the eruption of teeth after removing resistance from the crown of the permanent tooth germ.CONCLUSION HE staining of two cases of dental follicle tissues showed that the volume of dental follicle cells decreased,the nuclei were condensed,and there seemed to be cellular fibrosis.The immunohistochemical staining showed that both the dental follicle and alveolar bone tissue exhibited increased expression of periostin,decreased expression of RANKL and OPG proteins,and decreased RANKL/OPG ratio.After removing resistance,the permanent tooth germ often appears to have normal eruption.Tooth eruption disorders may be accompanied by abnormal remodeling of periostin,which affects the differentiation function of osteoclasts in the dental follicle and leads to metabolic imbalance of alveolar bone,resulting in tooth eruption disorders.Whether it is a single or full permanent tooth eruption disorder,once the coronal resistance is removed,the teeth can often erupt normally.展开更多
Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A;p. Ala632Thr) in a 7-year-old boy exhibi...Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A;p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a^(−/−) OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a^(−/−) OPCs in vitro and myelination in Tmem63a^(−/−) mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca^(2+) influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.展开更多
Objective:To assess the safety and topical efficacy of prim-O-glucosylcimifugin(POG)and investigate the molecular mechanisms of its therapeutic effects in atopic dermatitis(AD).Methods:The effects of POG on human kera...Objective:To assess the safety and topical efficacy of prim-O-glucosylcimifugin(POG)and investigate the molecular mechanisms of its therapeutic effects in atopic dermatitis(AD).Methods:The effects of POG on human keratinocyte cell viability and its anti-inflammatory properties were evaluated using cell counting kit-8 assay and reverse transcription-quantitative polymerase chain reaction(RT-qPCR).Subsequently,the impact of POG on the differentiation of cluster of differentiation(CD)4~+T cell subsets,including T-helper type(Th)1,Th2,Th17,and regulatory T(Treg),was examined through in vitro experiments.Network pharmacology analysis was used to elucidate POG's therapeutic mechanisms.Furthermore,the therapeutic potential of topically applied POG was further evaluated in a calcipotriol-induced mouse model of AD.The protein and transcript levels of inflammatory markers,including cytokines,lymphocyte-specific protein tyrosine kinase(Lck)mRNA,and LCK phosphorylation(p-LCK),were quantified using immunohistochemistry,RT-qPCR,and Western blot analysis.Results:POG was able to suppress cell proliferation and downregulate the transcription of interleukin 4(Il4)and Il13 mRNA.In vitro experiments indicated that POG significantly inhibited the differentiation of Th2 cells,whereas it exerted negligible influence on the differentiation of Th1,Th17 and Treg cells.Network pharmacology identified LCK as a key therapeutic target of POG.Moreover,the topical application of POG effectively alleviated skin lesions in the calcipotriol-induced AD mouse models without causing pathological changes in the liver,kidney or spleen tissues.POG significantly reduced the levels of Il4,Il5,Il13,and thymic stromal lymphopoietin(Tslp)m RNA in the AD mice.Concurrently,POG enhanced the expression of p-LCK protein and Lck mRNA.Conclusion:Our research revealed that POG inhibits Th2 cell differentiation by promoting p-LCK protein expression and hence effectively alleviates AD-related skin inflammation.展开更多
BACKGROUND Rectal cancer is one of the common digestive system malignant tumors around the world.Its early diagnosis and staging are crucial for rectal cancer treatment and prognosis.In recent years,tumor markers have...BACKGROUND Rectal cancer is one of the common digestive system malignant tumors around the world.Its early diagnosis and staging are crucial for rectal cancer treatment and prognosis.In recent years,tumor markers have gradually received attention in early screening,treatment monitoring and prognostic evaluation of cancer,but their predictive role in rectal cancer staging and differentiation is still unclear.AIM To assess the prognostic value of tumor markers alpha-fetoprotein(AFP)cancer antigen 72-4(CA72-4),carbohydrate antigen 19-9(CA19-9),and carcinoembryonic antigen(CEA),alongside multimodal magnetic resonance imaging(MRI),for staging and differentiating rectal cancer in patients.METHODS This study retrospectively analyzed 167 patients with rectal cancer who were treated at our institution from January 2020 to December 2024.Each patient underwent serological testing and multimodal MRI for diagnosis.Histopathological examination after surgical resection or imaging based on follow-up was used as the gold standard.According to the T stage and differentiation degree,patients were divided into low stage group(T1-T2)and high stage group(T3-T4).In addition,they were divided into low-differentiation groups and high-differentiation groups according to their differentiation degree.We compared the accuracy,sensitivity and specificity of tumor marker levels and MRI in rectal cancer stage and differentiation.RESULTS The study's findings indicate that in the context of rectal cancer T staging,there is substantial concordance between MRI and clinicopathological assessments,with a Kappa coefficient of 0.789(P<0.001).Similarly,for various degrees of tumor differentiation,MRI and clinicopathological evaluations demonstrated substantial agreement,with a Kappa coefficient of 0.651(P<0.001).Notably,the concentrations of tumor markers CA19-9,CA72-4,CEA,and AFP were significantly elevated in the T3-T4 stage compared to the T1-T2 stage.Furthermore,these markers were significantly higher in the low-differentiation group compared to the high-differentiation group(P<0.05).The combined use of tumor markers and MRI for preoperative T staging of rectal cancer yielded a diagnostic sensitivity of 93.7%and a specificity of 94.6%,as evidenced by the receiver operating characteristic analysis,with an area under the curve of 0.947.For tumor differentiation,the diagnostic sensitivity and specificity were 93.6%and 97.1%,respectively,with an area under the curve of 0.978(95%confidence interval:0.946-1.000),surpassing the accuracy of individual detection methods.CONCLUSION The CA19-9,CA72-4,CEA and AFP tumor markers combined with multimodal MRI have high sensitivity and specificity in diagnosing rectal cancer stage and differentiation.Their diagnostic efficacy is significantly better than that of single tests,which can effectively improve the predictive ability of rectal cancer stage and differentiation,provide a more reliable diagnostic reference for clinical practice,and have important clinical significance.展开更多
Hair follicle stem cell(HFSC),capable of self-renewal and differentiation in hair follicle,represents an emerging stem cell model for regenerative medicine.The interaction between HFSC and dermal papilla cell(DPC)gove...Hair follicle stem cell(HFSC),capable of self-renewal and differentiation in hair follicle,represents an emerging stem cell model for regenerative medicine.The interaction between HFSC and dermal papilla cell(DPC)governs hair follicle development.FGF7 functions as a paracrine protein regulating epithelial proliferation,differentiation and migration.The single-cell transcriptome profling and immunofuorescence analysis demonstrated that FGF7 localizes at DPC,while FGF7 receptor(FGFR2)expresses in both DPC and HFSC.Through co-culture experiments of HFSC and DPC,the results indicated that FGF7 secreted from DPC promotes the proliferation of DPC and HFSC via Wnt signaling pathway and induces HFSC differentiation.Furthermore,CUT&Tag assay revealed genomic colocalization between FGF7 and pluripotency-related genes and GSK3β.Electrophoretic mobility shift assay(EMSA)demonstrated that FGF7 interacts with the promoter region of CISH and PRKX.This research provides valuable insights into the molecular mechanisms underlying the hair cycle.Understanding the interaction between HFSC and DPC,as well as the role of FGF7,may advance regenerative medicine and hair loss treatment.展开更多
Complement C3 plays a critical role in periodontitis.However,its source,role and underlying mechanisms remain unclear.In our study,by analyzing single-cell sequencing data from mouse model of periodontitis,we identifi...Complement C3 plays a critical role in periodontitis.However,its source,role and underlying mechanisms remain unclear.In our study,by analyzing single-cell sequencing data from mouse model of periodontitis,we identified that C3 is primarily derived from periodontal fibroblasts.Subsequently,we demonstrated that C3a has a detrimental effect in ligature-induced periodontitis.C3ar−/−mice exhibited significantly less destruction of periodontal support tissues compared to wild-type mice,characterized by mild gingival tissue damage and reduced alveolar bone loss.This reduction was associated with decreased production of proinflammatory mediators and reduced osteoclast infiltration in the periodontal tissues.Mechanistic studies suggested that C3a could promote macrophage polarization and osteoclast differentiation.Finally,by analyzing single-cell sequencing data from the periodontal tissues of patients with periodontitis,we found that the results observed in mice were consistent with human data.Therefore,our findings clearly demonstrate the destructive role of fibroblast-derived C3 in ligature-induced periodontitis,driven by macrophage M1 polarization and osteoclast differentiation.These data strongly support the feasibility of C3a-targeted interventions for the treatment of human periodontitis.展开更多
基金supported by grants from National Natural Science Foundation of China(82272444,81972031,81972033)China Postdoctoral Science Foundation(2022M722382)Tianjin Key Medical Discipline(Specialty)Construction Project(TJYXZDXK-032A)。
文摘Neural EGFL-like 2(NELL2)is a secreted protein known for its regulatory functions in the nervous and reproductive systems,yet its role in bone biology remains unexplored.In this study,we observed that NELL2 was diminished in the bone of aged and ovariectomized(OVX)mice,as well as in the serum of osteopenia and osteoporosis patients.In vitro loss-of-function and gain-offunction studies revealed that NELL2 facilitated osteoblast differentiation and impeded adipocyte differentiation from stromal progenitor cells.In vivo studies further demonstrated that the deletion of NELL2 in preosteoblasts resulted in decreased cancellous bone mass in mice.Mechanistically,NELL2 interacted with the FNI-type domain located at the C-terminus of Fibronectin 1(Fn1).Moreover,we found that NELL2 activated the focal adhesion kinase(FAK)/AKT signaling pathway through Fn1/integrinβ1(ITGB1),leading to the promotion of osteogenesis and the inhibition of adipogenesis.Notably,administration of NELL2-AAV was found to ameliorate bone loss in OVX mice.These findings underscore the significant role of NELL2 in osteoblast differentiation and bone homeostasis,suggesting its potential as a therapeutic target for managing osteoporosis.
基金supported by the National Research Foundation(NRF)S&F-Scarce Skills Postdoctoral Fellowship,No.120752(to AC)the Global Excellence and Stature,Fourth Industrial Revolution(GES 4.0)Postgraduate Scholarship(to MJR)the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa(SARChI/NRF-DST),No.146290(to DDS and HA).
文摘Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infrared light promotes adipose stem cell proliferation and affects adipose stem cell migration,which is necessary for the cells homing to the site of injury.In this in vitro study,we explored the potential of adipose-derived stem cells to differentiate into neurons for future translational regenerative treatments in neurodegenerative disorders and brain injuries.We investigated the effects of various biological and chemical inducers on trans-differentiation and evaluated the impact of photobiomodulation using 825 nm near-infrared and 525 nm green laser light at 5 J/cm2.As adipose-derived stem cells can be used in autologous grafting and photobiomodulation has been shown to have biostimulatory effects.Our findings reveal that adipose-derived stem cells can indeed trans-differentiate into neuronal cells when exposed to inducers,with pre-induced cells exhibiting higher rates of proliferation and trans-differentiation compared with the control group.Interestingly,green laser light stimulation led to notable morphological changes indicative of enhanced trans-differentiation,while near-infrared photobiomodulation notably increased the expression of neuronal markers.Through biochemical analysis and enzyme-linked immunosorbent assays,we observed marked improvements in viability,proliferation,membrane permeability,and mitochondrial membrane potential,as well as increased protein levels of neuron-specific enolase and ciliary neurotrophic factor.Overall,our results demonstrate the efficacy of photobiomodulation in enhancing the trans-differentiation ability of adipose-derived stem cells,offering promising prospects for their use in regenerative medicine for neurodegenerative disorders and brain injuries.
基金supported by National Natural Science Foundation of China(grant numbers 82072523 to Zhiyong Hou)Postdoctoral program of Clinical medicine of Hebei Medical University(grant numbers PD2023012 to Sujuan Xu)+2 种基金Excellent postdoctoral research funding project of Hebei Province(grant numbers B2023005011 to Sujuan Xu)The 16th special grant of China Postdoctoral Science Foundation(grant numbers 2023T160182 to Sujuan Xu)Natural Science Foundation of Hebei Province,China(grant numbers H2023206230 to Yingchao Yin,H2024206186 to Sujuan Xu).
文摘The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis.Nuclear receptors(NRs)are now understood to be crucial in bone physiology and pathology.However,the function of the Farnesoid X receptor(FXR),a member of the NR family,in regulating bone homeostasis remains incompletely understood.In this study,in vitro and in vivo models revealed delayed bone development and an osteoporosis phenotype in mice lacking FXR in bone marrow mesenchymal stem cells(BMSCs)and osteoblasts due to impaired osteoblast differentiation.Mechanistically,FXR could stabilize RUNX2 by inhibiting Thoc6-mediated ubiquitination,thereby promoting osteogenic activity in BMSCs.Moreover,activated FXR could directly bind to the Thoc6 promoter,suppressing its expression.The interaction between RUNX2 and Thoc6 was mediated by the Runt domain of RUNX2 and the WD repeat of Thoc6.Additionally,Obeticholic acid(OCA),an orally available FXR agonist,could ameliorate bone loss in an ovariectomy(OVX)-induced osteoporotic mouse model.Taken together,our findings suggest that FXR plays pivotal roles in osteoblast differentiation by regulating RUNX2 stability and that targeting FXR may be a promising therapeutic approach for osteoporosis.
基金supported by the National Natural Science Foundation of China(Nos.82171552 and 82170479)the Natural Science Foundation of Shanghai Ctiy(No.21ZR1457500)the Science and Technology Bureau of Shanghai Putuo District(No.ptkwws202102).
文摘Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders.
基金supported by the Natural Science Foundation of Jiangsu Province of China,No.BK20211348(to SHQ)Xuzhou Basic Research Program,No.KC21030(to LYH)+1 种基金Leadership Program of Xuzhou Medical University,No.JBGS202203(to SHQ)Research Grant Council GRF of Hong Kong Special Administrative Region of China,No.17105220(to JGS)。
文摘It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.
基金supported by grants from the Liaoning Province Excellent Talent Program Project(XLYC1902031)Dalian Science and Technology Talent Innovation Plan Grant(2022RG18)Basic Research Project of the Department of Education of Liaoning Province(LJKQZ20222395)。
文摘Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation.
基金Supported by Natural Science Foundation of Guangdong Province in China(2018KTSCX161)。
文摘The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.
基金supported by the National Natural Science Foundation,China(32230108 to Z.Y.)National Key Research and Development Program,China(2022YFF1000300 to Z.Y.and 2022YFD2401800 to G.Z.)Foundation of Hubei Hongshan Laboratory(2021hszd021 to Z.Y.and 2021hskf013 to G.Z.)。
文摘Chorionic gonadotropinα(Cgα)functions as the shared subunit for thyroid-stimulating hormone subunitβ(Tshβ),luteinizing hormone subunitβ(Lhβ),and follicle-stimulating hormone subunitβ(Fshβ).While theseβ-subunits have been extensively studied using effective gene knockout models in zebrafish,the biological role of Cgαremains elusive.In this study,cgα-deficient zebrafish generated via transcription activator-like effector nucleases(TALENs)exhibited viability but displayed pronounced developmental abnormalities,including growth retardation,hyperpigmentation,reduced thyroxine(T4)levels,and defective anterior swim bladder inflation during juvenile stages.In adults,cgαdeficiency led to disrupted gonadal development,impaired secondary sex characteristics(SSCs),and severely impacted reproductive behavior in both female and male fish.Notably,both testicular and ovarian differentiation were observed in cgα-deficient fish and lhβ^(−/−);fshβ^(−/−)mutants.Gonadal sex differentiation in cgα-deficient zebrafish exhibited a pronounced shift toward testicular fate upon additional disruption of fshβ(cgα^(−/−);fshβ^(−/−)),marked by elevated anti-Müllerian hormone(amh)expression,or following loss of follicle-stimulating hormone receptor(fshr)(cgα^(−/−);fshr^(−/−)).In vitro assays in Chinese hamster ovary(CHO)cells revealed increased cAMP response element(CRE)promoter activity following transfection with constructs encoding Fshr,Fshβ/Fshr,or Cgα/Fshβ/Fshr.Collectively,the phenotypes observed in cgα-deficient fish recapitulate those of thyrotropin-and gonadotropin-disrupted models,highlighting the essential role of Cgαin thyroid and gonadal function.Importantly,these findings uncover the role of Fsh signaling in maintaining proper ovarian differentiation in zebrafish,including Cgα-independent Fshβactivity and the constitutive functionality of Fshr.
文摘BACKGROUND Gastric adenocarcinoma with enteroblastic differentiation(GAED)is one of the common subtypes of alpha-foetoprotein(AFP)-producing gastric cancer.GAED frequently results in venous invasion and liver metastasis,the latter being particularly linked to a poor prognosis.So far,the evidence for liver metastases from AFP-producing gastric cancer is only focused on those from gastric hepatoid adenocarcinoma,owing to their imaging similarities with hepatocellular carcinoma.This case report describes the characteristic diagnostic imaging findings of liver metastasis from GAED.CASE SUMMARY A 65-year-old man who had undergone a pyloric gastrectomy for GAED two years ago was found to have a liver tumor in the hepatic segment 7,accompanied by elevated serum AFP levels.Dynamic contrast-enhanced computed tomography revealed the tumor showing peripheral-dominant enhancement in the arterial phase with persistent central enhancement in the delayed phase.Gadoliniumethoxybenzyl-diethylenetriamine penta-acetic acid-enhanced magnetic resonance imaging demonstrated a signal drop in the tumor periphery in chemical shift imaging,along with arterial enhancement.Additionally,rim-like hypointensity surrounding the tumor was observed in the hepatobiliary phase.Postresection examination confirmed the tumor to be a metastasis from GAED.Histopathological examination revealed severe invasion of the tumor into the portal vein and hepatic vein surrounding the tumor,which explained the imaging features.CONCLUSION The imaging features of blood flow alternations resulting from vascular invasion may be crucial to diagnosing liver metastases from GAED.
基金the Shanghai Municipal Health Commission Medical New Technology Research and Translation Seed Program,No.2024ZZ2052Scientific Research Project funded by Shanghai Fifth People’s Hospital,Fudan University,No.2023WYRH03 and No.2025GZRFY05+2 种基金Shanghai Putuo District Health System Clinical Medicine Discipline Construction Project,No.2024tszk01Shanghai Health System Key Discipline,No.2024ZDXK0005Shanghai Minhang District Health and Family Planning Commission,No.2024MWDXK01.
文摘BACKGROUND Sepsis-associated encephalopathy(SAE)is a common complication of sepsis,characterized by cognitive impairment,altered consciousness,and psychiatric symptoms,including anxiety and depression.These psychiatric symptoms often exacerbate the overall prognosis and quality of life of affected patients.However,the underlying metabolic and proteomic features associated with SAE-induced psychiatric symptoms remain poorly understood.AIM To investigate the clinical manifestations of anxiety and depression in patients with sepsis and SAE and to explore their associated metabolic and proteomic characteristics.METHODS A total of 88 patients were enrolled,comprising 30 healthy controls,29 patients with sepsis,and 29 with SAE.Anxiety and depression symptoms were evaluated using the Hamilton anxiety rating scale(HAM-A)and Hamilton depression rating scale(HAM-D)in sepsis and SAE.Cognitive function was assessed using the Montreal Cognitive Assessment(MoCA),and quality of life was measured using the 36-Item Short Form Health Survey.Plasma samples were analyzed for metabolomic and proteomic profiling.Metabolic alterations were identified through liquid chromatography-mass spectrometry,while protein expression was assessed using Olink targeted proteomics.RESULTS Compared to the sepsis group,patients with SAE exhibited significantly higher levels of anxiety(HAM-A:15.2±4.0 vs 10.4±3.0,P=0.012)and depression(HAM-D:16.0±3.5 vs 9.1±2.3,P=0.003).Cognitive function,as measured by MoCA,was notably impaired in the SAE group(MoCA:18.5±4.0 vs 24.5±3.2,P=0.007).Quality of life scores,particularly in physical functioning,emotional well-being,and mental health,were significantly lower in patients with SAE.Metabolomic and proteomic analyses revealed substantial alterations in oxidative stress and nicotinamide adenine dinucleotide(NAD+)metabolism pathways,with cluster of differentiation(CD)38 emerging as a potential biomarker associated with psychiatric symptoms in SAE.Further validation in an independent cohort confirmed the diagnostic relevance of CD38.CONCLUSION This study highlights the significant psychological burden of SAE,manifested as anxiety and depression.Multiomics analysis identified distinct metabolic alterations,particularly in NAD+metabolism,that may contribute to psychiatric symptom development and progression.Furthermore,CD38 was identified as a promising biomarker for the early detection of SAE,providing potential avenues for early intervention and therapeutic targeting.
基金supported by the National Natural Science Foundation of China(32470399)Beijing Natural Science Foundation(5212014)Key Research and Development Program in the Ningxia Hui Autonomous Region,China(2020BBF02027).
文摘Chinese dwarf cherry(Cerasus humilis)is a fruit unique to China,which is considered to have osteoprotective effects.However,no systematic experimental characterization was available.In this study,the osteoprotective activity and mechanism of Chinese dwarf cherry polyphenol extract(OPE)was studied.In vitro,OPE stimulated the alkaline phosphatase activity in the early differentiation stage,increased the osteocalcin level in the middle differentiation stage,and induced the formation of more bonemineralized nodules in the late osteogenic stage.In vivo,OPE improved cancellous bone structure and maximum load of the femur in ovariectomized(OVX)rats.The balance between bone formation and resorption was regulated.Oxidative stress levels in the peripheral blood,liver and femur were reduced.OPE alleviated the disturbance in energy metabolism,muscle development,and muscle regulation-related signaling pathways caused by OVX and activated the calcium/adenosine monophosphate-activated protein kinase signaling pathway.Therefore,OPE is a potential dietary supplement for the prevention and treatment of osteoporosis.
基金Supported by the Nonprofit Research Institutes Foundation of Fujian Province,China,No.2020R1011003 and No.2022R1012001the Talents Training Project for the Key Young Scholars of Fujian Provincial Health Commission,China,No.2021GGA056.
文摘BACKGROUND Type 1 diabetes(T1D)results from the autoimmune-mediated loss of pancreatic β-cells.Current insulin therapies offer symptomatic relief but fall short of providing a definitive cure.Islet cell transplantation,while promising,faces limitations related to donor scarcity,procedural complexities,and the necessity for long-term immunosuppression.Consequently,there is an urgent need for innovative strategies aimed at β-cell regeneration.Patient-derived induced pluripotent stem cells(iPSCs),obtained from peripheral blood mononuclear cells(PBMCs)of T1D patients,hold great potential as a source of cells for therapeutic purposes.Therefore,the differentiation of T1D-iPSCs into functional pancreatic β-cells is a critical step toward effective β-cell replacement therapy.AIM To assess the potential of patient-derived T1D-β-like cells(differentiated from T1D-iPSCs reprogrammed from T1D-PBMCs)for restoring β-cell function in T1D.METHODS T1D-iPSCs were reprogrammed from T1D-PBMCs using an episomal vectorbased approach.Pluripotency was confirmed by flow cytometry(FCM),quantitative real-time polymerase chain reaction,genomic stability analysis,and teratoma formation assays.Differentiation into pancreatic β-cells was optimized using triiodothyronine(T3),vitamin C(Vc),and an adenovirus(M3C)encoding pancreatic duodenal homeobox-1,neurogenin 3(Ngn3),and MAF bZIP transcription factor A(MafA).Following characterization of β-cell features by immunofluorescence,quantitative real-time polymerase chain reaction,and flow cytometry,therapeutic efficacy was assessed through blood glucose monitoring after transplantation under the renal capsule of streptozotocin-induced diabetic mice.RESULTS T1D-iPSCs were successfully generated from T1D-PBMCs.These cells exhibited the hallmark characteristics of pluripotent stem cells,including appropriate morphology,differentiation potential,genomic integrity,and expression of pluripotency-associated genes.Differentiation yielded insulin-positive(insulin+)pancreatic β-like cells that,at the mRNA level,expressed key β-cell markers such as pancreatic duodenal homeobox-1,Ngn3,MafA,NeuroD,glucagon-like peptide-1 receptor,Nkx6.1,glucose transporter 2,and Kir6.2.Notably,the T3+Vc group displayed the lowest Ngn3 expression(1.31±0.38 vs 1.96±0.25 vs 2.51±0.24,P<0.01),while the M3C+T3+Vc group exhibited the highest MafA expression(0.49±0.11 vs 0.32±0.06 vs 0.29±0.08,P<0.05).Both in vitro and in vivo assessments confirmed the insulin secretion ability of the generated β-like cells;however,they did not demonstrate appropriate modulation of insulin release in response to variations in extracellular glucose concentrations.CONCLUSION T1D-iPSCs derived from T1D-PBMCs can be differentiated into insulin+β-like cells,albeit with functional immaturity.These cells represent a potential source of seed cells for β-cell replacement therapy in T1D.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52202371 and 51902102)the Natural Science Foundation of Shandong Province(Nos.ZR202211230173,ZR2020QE066 and ZR2021QE200)+2 种基金the Opening Project of State Key Laboratory of Advanced Technology for Float Glass(No.2020KF08)the SDUT&Zibo City Integration Development Project(No.2021SNPT0045)the fellowship of China Postdoctoral Science Foundation(No.2020M672081).
文摘Transition metal carbonates(TMCs)hold great potential as high-performance electrodes for alkali metal-ion batteries,owing to multiple-ion storage mechanisms involving conversion process and electrocatalytic reaction.However,they still suffer from inferior electronic conductivity and volume variation during delithiation/lithiation.Heterostructure and heteroatoms doping offer immense promise in enhancing reaction kinetics and structural integrity,which unfortunately have not been achieved in TMCs.Herein,a unique TMCs heterostructure with Ni-doped MnCO_(3)as“core”and Mn-doped NiCO_(3)as“shell”,which is wrapped by graphene(NM@MN/RGO),is achieved by cations differentiation strategy.The formation process for core-shell NM@MN consists of epitaxial growth of NiCO_(3)from MnCO_(3)and synchronously mutual doping,owing to the similar crystal structures but different solubility product constant/formation energy of MnCO_(3)and NiCO_(3).In-situ electrochemical impedance spectroscopy,galvanostatic intermittent titration technique,differential capacity versus voltage plots,theoretical calculation and kinetic analysis reveal the superior electrochemical activity of the NM@MN/RGO to MnCO_(3)/RGO.The NM@MN/RGO shows excellent lithium storage properties(1013.4 mAh·g^(-1)at 0.1 A·g^(-1)and 760 mAh·g^(-1)after 1000 cycles at 2 A·g^(-1))and potassium storage properties(capacity decay rate of 0.114 mAh·g^(-1)per cycle).This work proposes an efficient cation differentiation strategy for constructing advanced TMC electrodes.
基金Supported by The Xuzhou Medical University Affiliated Hospital Development Fund Support Project,No.XYFM202457the 521 Scientific Research Project of Lianyungang City,No.LYG 06521202362.
文摘BACKGROUND This study analyzed the dental follicle and alveolar bone of two patients with tooth eruption disorders,aiming to provide some reference for exploring the etiology and selecting treatment plans of this disease from the perspective of the influence of extracellular matrix on osteoclasts differentiation in dental follicle.CASE SUMMARY Collect dental follicle and alveolar bone tissue from one patient with single tooth eruption disorder and one patient with full permanent tooth eruption disorder,respectively.Simultaneously collect the dental follicle and alveolar bone tissue of obstructed teeth that need to be extracted due to orthodontic treatment as the control group.Hematoxylin and eosin(HE)staining was used to observe the morphology of dental follicle cells.Immunohistochemical staining was used to observe the expression of periostin,receptor activator of nuclear factor kappa B ligand(RANKL),and osteoprotegerin(OPG)protein in dental follicle and alveolar bone tissue.And observe the eruption of teeth after removing resistance from the crown of the permanent tooth germ.CONCLUSION HE staining of two cases of dental follicle tissues showed that the volume of dental follicle cells decreased,the nuclei were condensed,and there seemed to be cellular fibrosis.The immunohistochemical staining showed that both the dental follicle and alveolar bone tissue exhibited increased expression of periostin,decreased expression of RANKL and OPG proteins,and decreased RANKL/OPG ratio.After removing resistance,the permanent tooth germ often appears to have normal eruption.Tooth eruption disorders may be accompanied by abnormal remodeling of periostin,which affects the differentiation function of osteoclasts in the dental follicle and leads to metabolic imbalance of alveolar bone,resulting in tooth eruption disorders.Whether it is a single or full permanent tooth eruption disorder,once the coronal resistance is removed,the teeth can often erupt normally.
基金supported by grants from the National Key R&D Program of China(2019YFA0801603)the Guangdong High Level Innovation Research Institute(2021B0909050004)+2 种基金the National Natural Science Foundation of China(32330044,32170951,82201615,and 82101393)the Natural Science Foundation of Jiangsu Province(BK20201255 and BK20210008)the Fundamental Research Funds for the Central Universities(021414380533).
文摘Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A;p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a^(−/−) OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a^(−/−) OPCs in vitro and myelination in Tmem63a^(−/−) mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca^(2+) influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.
基金supported by the National Natural Science Foundation of China(No.82004359)Youth Talent Promotion Project of China Association of Traditional Chinese Medicine(2024–2026)Category B(No.2024-QNRC2-B04)+9 种基金Youth Medical Talents-Specialist Program of Shanghai“Rising Stars of Medical Talents”Youth Development ProgramHealth Young Talents of Shanghai Municipal Health Commission(No.2022YQ026)Shanghai Dermatology Research Center(No.2023ZZ02017)Shanghai Skin Disease Hospital demonstration research ward project(No.SHDC2023CRW009)Shanghai Key Discipline Construction Project of Traditional Chinese Medicine(No.shzyyzdxk-2024104)Shanghai Municipal Health Commission Health Industry Clinical Research Special Project(No.20224Y0373No.20234Y0075)Clinical Incubation Program(No.lcfy2023-08)Evidence-based dermatology base sponsored by State Administration of Traditional Chinese MedicineHigh-level Chinese Medicine Key Discipline Construction Project(Integrative Chinese and Western Medicine Clinic)of National Administration of TCM(No.zyyzdxk-2023065)。
文摘Objective:To assess the safety and topical efficacy of prim-O-glucosylcimifugin(POG)and investigate the molecular mechanisms of its therapeutic effects in atopic dermatitis(AD).Methods:The effects of POG on human keratinocyte cell viability and its anti-inflammatory properties were evaluated using cell counting kit-8 assay and reverse transcription-quantitative polymerase chain reaction(RT-qPCR).Subsequently,the impact of POG on the differentiation of cluster of differentiation(CD)4~+T cell subsets,including T-helper type(Th)1,Th2,Th17,and regulatory T(Treg),was examined through in vitro experiments.Network pharmacology analysis was used to elucidate POG's therapeutic mechanisms.Furthermore,the therapeutic potential of topically applied POG was further evaluated in a calcipotriol-induced mouse model of AD.The protein and transcript levels of inflammatory markers,including cytokines,lymphocyte-specific protein tyrosine kinase(Lck)mRNA,and LCK phosphorylation(p-LCK),were quantified using immunohistochemistry,RT-qPCR,and Western blot analysis.Results:POG was able to suppress cell proliferation and downregulate the transcription of interleukin 4(Il4)and Il13 mRNA.In vitro experiments indicated that POG significantly inhibited the differentiation of Th2 cells,whereas it exerted negligible influence on the differentiation of Th1,Th17 and Treg cells.Network pharmacology identified LCK as a key therapeutic target of POG.Moreover,the topical application of POG effectively alleviated skin lesions in the calcipotriol-induced AD mouse models without causing pathological changes in the liver,kidney or spleen tissues.POG significantly reduced the levels of Il4,Il5,Il13,and thymic stromal lymphopoietin(Tslp)m RNA in the AD mice.Concurrently,POG enhanced the expression of p-LCK protein and Lck mRNA.Conclusion:Our research revealed that POG inhibits Th2 cell differentiation by promoting p-LCK protein expression and hence effectively alleviates AD-related skin inflammation.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China,No.LTGY24H160006Jiaxing Medical Key Discipline,No.2023-ZC-015.
文摘BACKGROUND Rectal cancer is one of the common digestive system malignant tumors around the world.Its early diagnosis and staging are crucial for rectal cancer treatment and prognosis.In recent years,tumor markers have gradually received attention in early screening,treatment monitoring and prognostic evaluation of cancer,but their predictive role in rectal cancer staging and differentiation is still unclear.AIM To assess the prognostic value of tumor markers alpha-fetoprotein(AFP)cancer antigen 72-4(CA72-4),carbohydrate antigen 19-9(CA19-9),and carcinoembryonic antigen(CEA),alongside multimodal magnetic resonance imaging(MRI),for staging and differentiating rectal cancer in patients.METHODS This study retrospectively analyzed 167 patients with rectal cancer who were treated at our institution from January 2020 to December 2024.Each patient underwent serological testing and multimodal MRI for diagnosis.Histopathological examination after surgical resection or imaging based on follow-up was used as the gold standard.According to the T stage and differentiation degree,patients were divided into low stage group(T1-T2)and high stage group(T3-T4).In addition,they were divided into low-differentiation groups and high-differentiation groups according to their differentiation degree.We compared the accuracy,sensitivity and specificity of tumor marker levels and MRI in rectal cancer stage and differentiation.RESULTS The study's findings indicate that in the context of rectal cancer T staging,there is substantial concordance between MRI and clinicopathological assessments,with a Kappa coefficient of 0.789(P<0.001).Similarly,for various degrees of tumor differentiation,MRI and clinicopathological evaluations demonstrated substantial agreement,with a Kappa coefficient of 0.651(P<0.001).Notably,the concentrations of tumor markers CA19-9,CA72-4,CEA,and AFP were significantly elevated in the T3-T4 stage compared to the T1-T2 stage.Furthermore,these markers were significantly higher in the low-differentiation group compared to the high-differentiation group(P<0.05).The combined use of tumor markers and MRI for preoperative T staging of rectal cancer yielded a diagnostic sensitivity of 93.7%and a specificity of 94.6%,as evidenced by the receiver operating characteristic analysis,with an area under the curve of 0.947.For tumor differentiation,the diagnostic sensitivity and specificity were 93.6%and 97.1%,respectively,with an area under the curve of 0.978(95%confidence interval:0.946-1.000),surpassing the accuracy of individual detection methods.CONCLUSION The CA19-9,CA72-4,CEA and AFP tumor markers combined with multimodal MRI have high sensitivity and specificity in diagnosing rectal cancer stage and differentiation.Their diagnostic efficacy is significantly better than that of single tests,which can effectively improve the predictive ability of rectal cancer stage and differentiation,provide a more reliable diagnostic reference for clinical practice,and have important clinical significance.
基金supported by the National Key Research And Development Program of China(2022YFD1300204)。
文摘Hair follicle stem cell(HFSC),capable of self-renewal and differentiation in hair follicle,represents an emerging stem cell model for regenerative medicine.The interaction between HFSC and dermal papilla cell(DPC)governs hair follicle development.FGF7 functions as a paracrine protein regulating epithelial proliferation,differentiation and migration.The single-cell transcriptome profling and immunofuorescence analysis demonstrated that FGF7 localizes at DPC,while FGF7 receptor(FGFR2)expresses in both DPC and HFSC.Through co-culture experiments of HFSC and DPC,the results indicated that FGF7 secreted from DPC promotes the proliferation of DPC and HFSC via Wnt signaling pathway and induces HFSC differentiation.Furthermore,CUT&Tag assay revealed genomic colocalization between FGF7 and pluripotency-related genes and GSK3β.Electrophoretic mobility shift assay(EMSA)demonstrated that FGF7 interacts with the promoter region of CISH and PRKX.This research provides valuable insights into the molecular mechanisms underlying the hair cycle.Understanding the interaction between HFSC and DPC,as well as the role of FGF7,may advance regenerative medicine and hair loss treatment.
基金supported by the National Key R&D Program of China(No.2022YFC2504200)the National Natural Science Foundation of China(Nos.82370936,81920108012,82471032).
文摘Complement C3 plays a critical role in periodontitis.However,its source,role and underlying mechanisms remain unclear.In our study,by analyzing single-cell sequencing data from mouse model of periodontitis,we identified that C3 is primarily derived from periodontal fibroblasts.Subsequently,we demonstrated that C3a has a detrimental effect in ligature-induced periodontitis.C3ar−/−mice exhibited significantly less destruction of periodontal support tissues compared to wild-type mice,characterized by mild gingival tissue damage and reduced alveolar bone loss.This reduction was associated with decreased production of proinflammatory mediators and reduced osteoclast infiltration in the periodontal tissues.Mechanistic studies suggested that C3a could promote macrophage polarization and osteoclast differentiation.Finally,by analyzing single-cell sequencing data from the periodontal tissues of patients with periodontitis,we found that the results observed in mice were consistent with human data.Therefore,our findings clearly demonstrate the destructive role of fibroblast-derived C3 in ligature-induced periodontitis,driven by macrophage M1 polarization and osteoclast differentiation.These data strongly support the feasibility of C3a-targeted interventions for the treatment of human periodontitis.