Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitation...Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.展开更多
含分布式电源(distributed generation,DG)的双极直流配电系统是未来配电网发展的重要形态之一,但由于DG接入方式、数量、容量、位置以及系统正负极负荷不平衡对系统静暂态电压稳定性影响不同,目前相关研究尚缺乏对此问题的分析。该文...含分布式电源(distributed generation,DG)的双极直流配电系统是未来配电网发展的重要形态之一,但由于DG接入方式、数量、容量、位置以及系统正负极负荷不平衡对系统静暂态电压稳定性影响不同,目前相关研究尚缺乏对此问题的分析。该文首先将DG等效为受控电流源,推导分析了DG接入方式、容量及负荷不平衡度对系统静态下电压不平衡度的影响;其次,基于单极故障下光伏型DG与交流电网暂态放电情况,推导分析了DG接入方式、位置、容量与系统暂态电压稳定性的关系;再者,基于多目标蜣螂优化算法提出以系统静暂态电压稳定性与DG接入成本为目标的DG接入方案规划方法,采用熵权逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)法筛选出DG接入的最佳折中方案。最后在Matlab/Simulink仿真平台搭建改进IEEE14、IEEE33双极直流配电系统验证该文所提优化方法的普适性和有效性。展开更多
Distributed cognition is a new development trend of cognitivism, and is also a new research field of knowledge manage- ment. The study discusses that tacit knowledge explicating activity is a distributed cognitive act...Distributed cognition is a new development trend of cognitivism, and is also a new research field of knowledge manage- ment. The study discusses that tacit knowledge explicating activity is a distributed cognitive activity, whose success depends on interaction of each of these factors in distributed cognitive system and none of the factor could be neglected. Further, the study exploits distributed cognition to explore how to design these factors in the system so that tacit knowledge explicating can be accomplished successfully.展开更多
Distributed leading-edge (LE) roughness could have significant impact on the aerodynamicperformance of a low-Reynolds-number (low-Re) airfoil, which has not yet been fully understood.In the present study, experime...Distributed leading-edge (LE) roughness could have significant impact on the aerodynamicperformance of a low-Reynolds-number (low-Re) airfoil, which has not yet been fully understood.In the present study, experiments were conducted to study the effects of distributed hemisphericalroughness with different sizes and distribution patterns on the performance of a GA (W)-1 airfoil.Surface pressure and particle image velocimetry (PIV) measurements were performed undervarious incident angles and different Re numbers. Significant reduction in lift and increase in dragwere found for all cases with the LE roughness applied. Compared with the distribution pattern,the roughness height was found to be a more significant factor in determining the lift reductionand altering stall behaviors. It is also found while the larger roughness advances the aerodynamicstall, the smaller roughness tends to prevent deep stall at high incident angles. PIV results alsosuggest that staggered distribution pattern induces higher fluctuations in the wake flow than thealigned pattern does. Results imply that distributed LE roughness with large element sizes areparticularly detrimental to aerodynamic performances, while those with small element sizes couldpotentially serve as a passive control mechanism to alleviate deep stall conditions at high incidentangles.展开更多
This article outlines the benefits and risks of the distributed ledger technology(DLT)for the clearing and settlement of exchange-traded and OTC securities,followed by a description of the technology’s potential role...This article outlines the benefits and risks of the distributed ledger technology(DLT)for the clearing and settlement of exchange-traded and OTC securities,followed by a description of the technology’s potential role for central counterparties and central securities depositories.Although the industry and scholars are attempting to solve the technological and operational issues that DLT systems still face,outstanding legal risks are such that the financial industry is asking for more regulatory guidance and intervention.This article wants to contribute to the public policy debate by presenting potential regulatory barriers that may have to be removed for DLT to be fully adopted.In addition,it identifies areas requiring an update of the legal framework in order to address certain prudential and conduct risks that this technology could introduce.展开更多
As one of the most concerned digital technologies in recent years,blockchain and distributed ledger technology are an important driving force for a new round of technological development.It is currently in the process...As one of the most concerned digital technologies in recent years,blockchain and distributed ledger technology are an important driving force for a new round of technological development.It is currently in the process of accelerating its evolution and maturity,and has gradually integrated with other digital technologies.It has been applied in many industries,providing decentralized solutions for various industries,realizing innovative storage models,and building a new trust system.As blockchain technology is officially incorporated into China’s new information infrastructure category,the application fields of blockchain have expanded rapidly,gradually extending from the financial field and government affairs to other fields in the real economy.At the same time,with the continuous development of the globalized economy,blockchain technology will also have a profound impact on international technological and economic development.Therefore,for the healthy and orderly development and real implementation of the blockchain industry,standardize the application of blockchain,effectively break through the cognitive and technical barriers between different countries,industries and systems on a global scale,prevent application risks,the development of the global blockchain industry needs standardization basis,which is particularly important and urgent.A sound standard system is an important key to the successful development of technology,and formulating the right standard at the right time for technology development helps ensure the ease of use and interoperability of the technology.From the perspective of international standardization,this article first introduces the general situation of ISO,ITU-T,IEEE,W3C and other international standardization organizations,and sorts out the status quo of the blockchain standardization working groups of mainstream international standardization organizations.All blockchain-related standards under development have been analyzed for the characteristics of international blockchain technology standards and industry application standards.Through data analysis,the overlaps,differences and conflicts in the field of international blockchain standard formulation are sorted out,and suggestions for blockchain standardization work in the application and development of blockchain technology standardization by international organizations and industries are put forward.The plans and layouts of future international standards are summarized to help the development of the international standardization of blockchain.展开更多
A zero-knowledge proof or protocol is a cryptographic technique for verifying private data without revealing it in its clear form.In this paper,we evaluate the potential for zero-knowledge distributed ledger technolog...A zero-knowledge proof or protocol is a cryptographic technique for verifying private data without revealing it in its clear form.In this paper,we evaluate the potential for zero-knowledge distributed ledger technology to alleviate asymmetry of information in the asset-backed securitization market.To frame this inquiry,we conducted market data analyses,a review of prior literature,stakeholder interviews with investors,originators and security issuers and collaboration with blockchain engineers and researchers.We introduce a new system which could enable all market participants in the securitization lifecycle(e.g.investors,rating agencies,regulators and security issuers)to interact on a unique decentralized platform while maintaining the privacy of loan-level data,therefore providing the industry with timely analytics and performance data.Our platform is powered by zkLedger(Narula et al.2018),a zero-knowledge protocol developed by the MIT Media Lab and the first system that enables participants of a distributed ledger to run publicly verifiable analytics on masked data.展开更多
With the vigorous development of mobile networks,the number of devices at the network edge is growing rapidly and the massive amount of data generated by the devices brings a huge challenge of response latency and com...With the vigorous development of mobile networks,the number of devices at the network edge is growing rapidly and the massive amount of data generated by the devices brings a huge challenge of response latency and communication burden.Existing resource monitoring systems are widely deployed in cloud data centers,but it is difficult for traditional resource monitoring solutions to handle the massive data generated by thousands of edge devices.To address these challenges,we propose a super resolution sensing(SRS)method for distributed resource monitoring,which can be used to recover reliable and accurate high‑frequency data from low‑frequency sampled resource monitoring data.Experiments based on the proposed SRS model are also conducted and the experimental results show that it can effectively reduce the errors generated when recovering low‑frequency monitoring data to high‑frequency data,and verify the effectiveness and practical value of applying SRS method for resource monitoring on edge clouds.展开更多
With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, le...With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.展开更多
Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant sect...Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant section is introduced to establish the frequency equations of the coupled system.Comparisons with the results between analytic model and FEM indicate that the present research is correct and reasonable.In view of an example bridge,natural frequencies are studied on the bridge subjected to uniform distributed moving loads in cases of different weight and span,by which some regular phenomenon are obtained.The present study can apply in the engineering problem of interaction between bridges and moving loads such as trains and tracked vehicles.展开更多
基金supported by the National Natural Science Foundation of China(62133008,62303273,62188101,62373226,62473173)Young Taishan Scholars Program of Shandong Province of China(tsqn202408206)+2 种基金a Project of Shandong Province Higher Educational Youth and Innovation Talent Introduction and Education Programthe Natural Science Foundation of Shandong Province,China(ZR2023QF072)China Postdoctoral Science Foundation(2022M721932)
文摘Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.
文摘含分布式电源(distributed generation,DG)的双极直流配电系统是未来配电网发展的重要形态之一,但由于DG接入方式、数量、容量、位置以及系统正负极负荷不平衡对系统静暂态电压稳定性影响不同,目前相关研究尚缺乏对此问题的分析。该文首先将DG等效为受控电流源,推导分析了DG接入方式、容量及负荷不平衡度对系统静态下电压不平衡度的影响;其次,基于单极故障下光伏型DG与交流电网暂态放电情况,推导分析了DG接入方式、位置、容量与系统暂态电压稳定性的关系;再者,基于多目标蜣螂优化算法提出以系统静暂态电压稳定性与DG接入成本为目标的DG接入方案规划方法,采用熵权逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)法筛选出DG接入的最佳折中方案。最后在Matlab/Simulink仿真平台搭建改进IEEE14、IEEE33双极直流配电系统验证该文所提优化方法的普适性和有效性。
文摘Distributed cognition is a new development trend of cognitivism, and is also a new research field of knowledge manage- ment. The study discusses that tacit knowledge explicating activity is a distributed cognitive activity, whose success depends on interaction of each of these factors in distributed cognitive system and none of the factor could be neglected. Further, the study exploits distributed cognition to explore how to design these factors in the system so that tacit knowledge explicating can be accomplished successfully.
文摘Distributed leading-edge (LE) roughness could have significant impact on the aerodynamicperformance of a low-Reynolds-number (low-Re) airfoil, which has not yet been fully understood.In the present study, experiments were conducted to study the effects of distributed hemisphericalroughness with different sizes and distribution patterns on the performance of a GA (W)-1 airfoil.Surface pressure and particle image velocimetry (PIV) measurements were performed undervarious incident angles and different Re numbers. Significant reduction in lift and increase in dragwere found for all cases with the LE roughness applied. Compared with the distribution pattern,the roughness height was found to be a more significant factor in determining the lift reductionand altering stall behaviors. It is also found while the larger roughness advances the aerodynamicstall, the smaller roughness tends to prevent deep stall at high incident angles. PIV results alsosuggest that staggered distribution pattern induces higher fluctuations in the wake flow than thealigned pattern does. Results imply that distributed LE roughness with large element sizes areparticularly detrimental to aerodynamic performances, while those with small element sizes couldpotentially serve as a passive control mechanism to alleviate deep stall conditions at high incidentangles.
文摘This article outlines the benefits and risks of the distributed ledger technology(DLT)for the clearing and settlement of exchange-traded and OTC securities,followed by a description of the technology’s potential role for central counterparties and central securities depositories.Although the industry and scholars are attempting to solve the technological and operational issues that DLT systems still face,outstanding legal risks are such that the financial industry is asking for more regulatory guidance and intervention.This article wants to contribute to the public policy debate by presenting potential regulatory barriers that may have to be removed for DLT to be fully adopted.In addition,it identifies areas requiring an update of the legal framework in order to address certain prudential and conduct risks that this technology could introduce.
基金supported by the Key R&D Program of Zhejiang Province(2021C01105)the Key R&D Program of Guangdong Province(2020B0101090003)+1 种基金the National Key R&D Program of China(2021YFB2701100)These supports are gratefully acknowledged.
文摘As one of the most concerned digital technologies in recent years,blockchain and distributed ledger technology are an important driving force for a new round of technological development.It is currently in the process of accelerating its evolution and maturity,and has gradually integrated with other digital technologies.It has been applied in many industries,providing decentralized solutions for various industries,realizing innovative storage models,and building a new trust system.As blockchain technology is officially incorporated into China’s new information infrastructure category,the application fields of blockchain have expanded rapidly,gradually extending from the financial field and government affairs to other fields in the real economy.At the same time,with the continuous development of the globalized economy,blockchain technology will also have a profound impact on international technological and economic development.Therefore,for the healthy and orderly development and real implementation of the blockchain industry,standardize the application of blockchain,effectively break through the cognitive and technical barriers between different countries,industries and systems on a global scale,prevent application risks,the development of the global blockchain industry needs standardization basis,which is particularly important and urgent.A sound standard system is an important key to the successful development of technology,and formulating the right standard at the right time for technology development helps ensure the ease of use and interoperability of the technology.From the perspective of international standardization,this article first introduces the general situation of ISO,ITU-T,IEEE,W3C and other international standardization organizations,and sorts out the status quo of the blockchain standardization working groups of mainstream international standardization organizations.All blockchain-related standards under development have been analyzed for the characteristics of international blockchain technology standards and industry application standards.Through data analysis,the overlaps,differences and conflicts in the field of international blockchain standard formulation are sorted out,and suggestions for blockchain standardization work in the application and development of blockchain technology standardization by international organizations and industries are put forward.The plans and layouts of future international standards are summarized to help the development of the international standardization of blockchain.
基金We received funding solely from our institution to perform this research.
文摘A zero-knowledge proof or protocol is a cryptographic technique for verifying private data without revealing it in its clear form.In this paper,we evaluate the potential for zero-knowledge distributed ledger technology to alleviate asymmetry of information in the asset-backed securitization market.To frame this inquiry,we conducted market data analyses,a review of prior literature,stakeholder interviews with investors,originators and security issuers and collaboration with blockchain engineers and researchers.We introduce a new system which could enable all market participants in the securitization lifecycle(e.g.investors,rating agencies,regulators and security issuers)to interact on a unique decentralized platform while maintaining the privacy of loan-level data,therefore providing the industry with timely analytics and performance data.Our platform is powered by zkLedger(Narula et al.2018),a zero-knowledge protocol developed by the MIT Media Lab and the first system that enables participants of a distributed ledger to run publicly verifiable analytics on masked data.
文摘With the vigorous development of mobile networks,the number of devices at the network edge is growing rapidly and the massive amount of data generated by the devices brings a huge challenge of response latency and communication burden.Existing resource monitoring systems are widely deployed in cloud data centers,but it is difficult for traditional resource monitoring solutions to handle the massive data generated by thousands of edge devices.To address these challenges,we propose a super resolution sensing(SRS)method for distributed resource monitoring,which can be used to recover reliable and accurate high‑frequency data from low‑frequency sampled resource monitoring data.Experiments based on the proposed SRS model are also conducted and the experimental results show that it can effectively reduce the errors generated when recovering low‑frequency monitoring data to high‑frequency data,and verify the effectiveness and practical value of applying SRS method for resource monitoring on edge clouds.
文摘With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.
文摘Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant section is introduced to establish the frequency equations of the coupled system.Comparisons with the results between analytic model and FEM indicate that the present research is correct and reasonable.In view of an example bridge,natural frequencies are studied on the bridge subjected to uniform distributed moving loads in cases of different weight and span,by which some regular phenomenon are obtained.The present study can apply in the engineering problem of interaction between bridges and moving loads such as trains and tracked vehicles.