Doubly-fed induction generator(DFIG)-based wind farm has the characteristic of transient fault with low voltage ride through(LVRT)capability.A new three-phase fault direction identification method for the outgoing tra...Doubly-fed induction generator(DFIG)-based wind farm has the characteristic of transient fault with low voltage ride through(LVRT)capability.A new three-phase fault direction identification method for the outgoing transmission line of the wind farm is presented.The ability of the new directional relay to differentiate between a three-phase fault in one direction or the other is obtained by using the increment of phase angle difference between the memory voltage signal and the fault current signal within a certain time,and using the amplitude variation of the fault current.It can be inferred that the fault current is supplied by the wind farm whether the phase angle differs or the current amplitude varies considerably.Different fault locations at the outgoing transmission line have been simulated by PSCAD/EMTDC to evaluate the reliability and sensitivity of the proposed technique.Results show that the new directional relay is of faster response when a three-phase fault occurs at the outgoing transmission line of a DFIG-based wind farm.展开更多
A probabilistic equivalent method for doubly fed induction generator (DFIG) based wind farms is proposed in this paper.First,the wind farm equivalent model is assumed to be composed of three types of equivalent DFIGs ...A probabilistic equivalent method for doubly fed induction generator (DFIG) based wind farms is proposed in this paper.First,the wind farm equivalent model is assumed to be composed of three types of equivalent DFIGs with different dynamic characteristics.The structure of equivalent model remains constant,whereas the parameters change with the migration of different scenarios in the wind farm.Then,historical meteorological data are utilized to investigate the probability distribution of key equivalent parameters,such as capacity,wind speed and electrical impedance to the point of common coupling.Each type of equivalent DFIG is further clustered into several groups according to their active power output.Combinations are created to generate representative scenarios.The probabilistic equivalent model of wind farm is finally achieved after removing invalid combinations.Most matched representative scenarios can be predicted according to the real-time measurement.The equivalentmodel is applied to the probabilistic power flow calculation and the stability analysis of test systems.展开更多
This paper modeled a doubly fed induction generator (DFIG) - based offshore wind farm integrated through a voltage source converter –based high voltage direct current (VSC-HVDC) transmission system, which is collecte...This paper modeled a doubly fed induction generator (DFIG) - based offshore wind farm integrated through a voltage source converter –based high voltage direct current (VSC-HVDC) transmission system, which is collected with infinite bus for small signal stability analysis. The control system of HVDC system is considered for the stability analysis. The impact of the VSC control parameters on the network stability is studied. The lineared dynamic model is employed to do small signal stability analysis by the eigenvalue analysis. The locus of the eigenvalue, which is corresponding to the oscillation model is studied. Time domain simulations conducted in Matlab/Simulink are used to validate the small signal stability analysis.展开更多
This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the i...This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the impact of wakes on turbine effective wind speed is analyzed,leading to a quantitative method for assessing wake interactions.Based on these interactions,a partitioning method divides the wind farm into smaller,computationally manageable zones.Subsequently,a heuristic control algorithm is developed for yaw optimization within each partition,reducing the overall computational burden associated with multi-turbine optimization.The algorithm’s effectiveness is evaluated through case studies on 11-turbine and 28-turbine wind farms,demonstrating power generation increases of 9.78%and 1.78%,respectively,compared to baseline operation.The primary innovation lies in coupling the higher-fidelity dynamic FLORIDyn wake model with a graph-based partitioning strategy and a computationally efficient heuristic optimization,enabling scalable and accurate yaw control for large wind farms,overcoming limitations associated with simplified models or centralized optimization approaches.展开更多
The share of wind and solar energy in global energy mix is rising rapidly.Despite their great potential for reducing carbon emissions,poorly planned wind and solar farms may encroach on socio-ecologically sensitive ar...The share of wind and solar energy in global energy mix is rising rapidly.Despite their great potential for reducing carbon emissions,poorly planned wind and solar farms may encroach on socio-ecologically sensitive areas,threatening biodiversity and Indigenous people's traditional land uses.However,these potential risks associated with wind and solar farm development worldwide are poorly understood.Here,we evaluate the potential biodiversity and Indigenous risks from wind and solar energy development by examining the extent to which global wind and solar farms are situated within or adjacent to socio-ecologically sensitive areas.Our analysis revealed that 13,699 wind and solar farms or 14.4%of the farms'total footprint area are within protected areas,critical habitats,and Indigenous people's lands,occupying a total of 26,840 km^(2)of those socio-ecologically sensitive areas.Wind and solar farms overlap with the distribution ranges of 2,310 threatened amphibians,birds,mammals,and reptiles,accounting for 36.3%of the world's 6,362 threatened vertebrate species.The encroachment of solar and wind farms on sensitive areas mostly occurs in economically developed countries with substantial wind and solar energy facilities,while many developing countries in the tropics tend to have a higher proportion of such farms situated within sensitive areas.Compared to wind farms,solar farms pose greater risks to biodiversity and Indigenous people's lands.These findings provide valuable insights into the socio-ecological risks of wind and solar energy development and highlight the urgent need for strategic planning to mitigate the risks.展开更多
The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed ...The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.展开更多
The impact of large-scale grid-connected wind farms of Doubly-fed Induction Generator (DFIG) type on power system transient stability is elaborately discussed in this paper. In accordance with an equivalent generator/...The impact of large-scale grid-connected wind farms of Doubly-fed Induction Generator (DFIG) type on power system transient stability is elaborately discussed in this paper. In accordance with an equivalent generator/converter model, the comprehensive numerical simulations with multiple wind farms of DFIG type involved are carried out to reveal the impact of wind farm on dynamic behavior of existing interconnected power system. Different load models involving nonlinear load model and induction motor model are considered during simulations. Finally, some preliminary conclusions are summarized and discussed.展开更多
The global demand for renewable energy has resulted in a rapid expansion of offshore wind farms(OWFs)and increased attention to the ecological impacts of OWFs on the marine ecosystem.Previous reviews mainly focused on...The global demand for renewable energy has resulted in a rapid expansion of offshore wind farms(OWFs)and increased attention to the ecological impacts of OWFs on the marine ecosystem.Previous reviews mainly focused on the OWFs’impacts on individual species like birds,bats,or mammals.This review collected numerous field-measured data and simulated results to summarize the ecological impacts on phytoplankton,zooplankton,zoobenthos,fishes,and mammals from each trophic level and also analyze their interactions in the marine food chain.Phytoplankton and zooplankton are positively or adversely affected by the‘wave effect’,‘shading effect’,oxygen depletion and predation pressure,leading to a ±10% fluctuation of primary production.Although zoobenthos are threatened transiently by habitat destruction with a reduction of around 60% in biomass in the construction stage,their abundance exhibited an over 90% increase,dominated by sessile species,due to the‘reef effect’in the operation stage.Marine fishes and mammals are to endure the interferences of noise and electromagnetic,but they are also aggregated around OWFs by the‘reef effect’and‘reserve effect’.Furthermore,the complexity of marine ecosystem would increase with a promotion of the total system biomass by 40% through trophic cascade effects strengthen and resource partitioning alternation triggered by the proliferation of filter-feeders.The suitable site selection,long-term monitoring,and life-cycle-assessment of ecological impacts of OWFs that are lacking in current literature have been described in this review,as well as the carbon emission and deposition.展开更多
The diode rectifier unit(DRU)-based high-voltage DC(DRU-HVDC) system is a promising solution for offshore wind energy transmission thanks to its compact design, high efficiency, and strong reliability. Herein we inves...The diode rectifier unit(DRU)-based high-voltage DC(DRU-HVDC) system is a promising solution for offshore wind energy transmission thanks to its compact design, high efficiency, and strong reliability. Herein we investigate the feasibility of the DRU-HVDC system considering onshore and offshore AC grid faults, DC cable faults, and internal DRU faults. To ensure safe operation during the faults, the wind turbine(WT) converters are designed to operate in either current-limiting or voltage-limiting mode to limit potential excessive overcurrent or overvoltage. Strategies for providing fault currents using WT converters during offshore AC faults to enable offshore overcurrent and differential fault protection are investigated. The DRU-HVDC system is robust against various faults, and it can automatically restore power transmission after fault isolation. Simulation results confirm the system performance under various fault conditions.展开更多
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
Reducing the operation and maintenance (O & M) cost is one of the potential actions that could reduce the cost of energy produced by offshore wind farms. This article attempts to reduce O & M cost by improving...Reducing the operation and maintenance (O & M) cost is one of the potential actions that could reduce the cost of energy produced by offshore wind farms. This article attempts to reduce O & M cost by improving the utilization of the maintenance resources, specifically the efficient scheduling and routing of the maintenance fleet. Scheduling and routing of maintenance fleet is a non-linear optimization problem with high complexity and a number of constraints. A heuristic algorithm, Ant Colony Optimization (ACO), was modified as Multi-ACO to be used to find the optimal scheduling and routing of maintenance fleet. The numerical studies showed that the proposed methodology was effective and robust enough to find the optimal solution even if the number of offshore wind turbine increases. The suggested approaches are helpful to avoid a time-consuming process of manually planning the scheduling and routing with a presumably suboptimal outcome.展开更多
This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two win...This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing.At the same time,the wind speed predicted by the EC model is also included for comparative analysis.The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A.The CMA-GD model exhibits a monthly average correlation coefficient of 0.56,root mean square error of 2.72 m s^(-1),and average absolute error of 2.11 m s^(-1).In contrast,the EC model shows a monthly average correlation coefficient of 0.51,root mean square error of 2.83 m s^(-1),and average absolute error of 2.21 m s^(-1).Conversely,in Wind Farm B,the EC model outperforms the CMA-GD model.The CMA-GD model achieves a monthly average correlation coefficient of 0.55,root mean square error of 2.61 m s^(-1),and average absolute error of 2.13 m s^(-1).By contrast,the EC model displays a monthly average correlation coefficient of 0.63,root mean square error of 2.04 m s^(-1),and average absolute error of 1.67 m s^(-1).展开更多
Firstly, characteristics of coastal wind farms were analyzed, and then lightning damage to coastal wind farms was discussed, finally main lightning protection measures were put forward from aspects of turbine blades, ...Firstly, characteristics of coastal wind farms were analyzed, and then lightning damage to coastal wind farms was discussed, finally main lightning protection measures were put forward from aspects of turbine blades, engine rooms and overvoltage protection. Besides conventional light- ning protection technology, local lightning protection, pre-discharge and lightning motoring and early warning techniques should be used to protect coastal wind farms against lightning.展开更多
Wind power has been developing rapidly as a key measure to mitigate human-driven global warming.The under-standing of the development and impacts of wind farms on local climate and vegetation is of great importance fo...Wind power has been developing rapidly as a key measure to mitigate human-driven global warming.The under-standing of the development and impacts of wind farms on local climate and vegetation is of great importance for their rational use but is still limited.In this study,we combined remote sensing and on-site investigations to identify wind farm locations in Inner Mongolia and performed landscape pattern analyses using Fragstats.We explored the impacts of wind farms on land surface temperature(LST)and vegetation net primary productivity(NPP)between 1990 and 2020 by contrasting these metrics in wind farms with those in non-wind farm areas.The results showed that the area of wind farms increased rapidly from 1.2 km2 in 1990 to 10,755 km2 in 2020.Spatially,wind farms are mainly clustered in three aggregation areas in the center.Further,wind farms increased nighttime LST,with a mean value of 0.23℃,but had minor impacts on the daytime LST.Moreover,wind farms caused a decline in NPP,especially over forest areas,with an average reduction of 12.37 GC/m^(2).Given the impact of wind farms on LST and NPP,we suggest that the development of wind farms should fully consider their direct and potential impacts.This study provides scientific guidance on the spatial pattern of future wind farms.展开更多
The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV...The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.展开更多
Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This ...Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.展开更多
As a new dynamic reactive power compensator,the grid-forming Static Var Generator(GF-SVG)can not only provide reactive power-voltage support,but also has inertial support capability.It has been experimentally deployed...As a new dynamic reactive power compensator,the grid-forming Static Var Generator(GF-SVG)can not only provide reactive power-voltage support,but also has inertial support capability.It has been experimentally deployed in many wind farms.However,studies have shown that when the three-phase short-circuit fault occurs in the wind farm,the transient overcurrent during the fault occurrence and fault clearance is suppressed,making it difficult for GF-SVG to use traditional fixed virtual impedance.Aiming at the problem,firstly,the influence of virtual reactance on control stability is analyzed using the GF-SVG’s current open-loop transfer function.Secondly,based on the existing current limitation strategies of GF-SVG,an adaptive virtual reactance current limitation strategy suitable for symmetrical faults of the power grid is proposed,which limits GF-SVG’s transient overcurrent during fault occurrence and fault clearance stage to the tolerance range of GF-SVG’s power devices.Based on the GF-SVG’s active power loop and reactive power loop small signal models,the availability of the proposed adaptive virtual reactance in suppressing the DC voltage drop of GF-SVG is analyzed,and shortening the transient overvoltage recovery time of the wind farm after the fault clearance is also discussed.Finally,electromagnetic simulation proves the effectiveness and correctness of the proposed adaptive current limitation method.展开更多
Aiming at the problems of large fluctuation of output active power and poor control performance in the process of frequency support of an energy-storage-type static-var-generator(ESVG),the adaptive adjustment control ...Aiming at the problems of large fluctuation of output active power and poor control performance in the process of frequency support of an energy-storage-type static-var-generator(ESVG),the adaptive adjustment control method for its active-loop parameters is used to realize thewind-farmfrequency support,which has become the current research hotspot.Taking the ESVG with a supercapacitor on the DC side as the research object,the influence trend of the change of virtual rotation inertia and virtual damping coefficient on its virtual angular velocity and power angle is analyzed.Then,the constraint relationship between the equivalent virtual inertia time constant of the supercapacitor and the virtual rotation inertia of the ESVG is clarified.Then,combined with the second-order response characteristics of the ESVG power control loop,the selection principles of the frequency modulation coefficient,the virtual rotation inertia,and the virtual damping coefficient are determined.An ESVG adjustment control method,considering the adaptive adjustment of the active loop parameters of the supercapacitor equivalent inertia,is proposed.While ensuring the frequency support capability of the ESVG,the fluctuation degree of its output active power and the virtual angular velocity are suppressed,and the proposed adjustment method also improves the stability of the ESVG control system and the frequency support capability for the wind farm.Finally,the simulation verifies the correctness of the theoretical analysis and the effectiveness of the proposed strategy.展开更多
Wake effects in large-scalewind farms significantly reduce energy capture efficiency.ActiveWakeControl(AWC),particularly through intentional yaw misalignment of upstream turbines,has emerged as a promising strategy to...Wake effects in large-scalewind farms significantly reduce energy capture efficiency.ActiveWakeControl(AWC),particularly through intentional yaw misalignment of upstream turbines,has emerged as a promising strategy to mitigate these losses by redirecting wakes away from downstream turbines.However,the effectiveness of yaw-based AWC is highly dependent on the accuracy of the underlying wake prediction models,which often require site-specific adjustments to reflect local atmospheric conditions and turbine characteristics.This paper presents an integrated,data-driven framework tomaximize wind farmpower output.Themethodology consists of three key stages.First,a practical simulation-assisted matching method is developed to estimate the True North Alignment(TNA)of each turbine using historical Supervisory Control and Data Acquisition(SCADA)data,resolving a common source of operational uncertainty.Second,key wake expansion parameters of the Floris engineering wake model are calibrated using site-specific SCADA power data,tailoring the model to the JibeiWind Farm in China.Finally,using this calibrated model,the derivative-free solver NOMAD is employed to determine the optimal yaw angle settings for an 11-turbine cluster under various wind conditions.Simulation studies,based on real operational scenarios,demonstrate the effectiveness of the proposed framework.The optimized yaw control strategies achieved total power output gains of up to 5.4%compared to the baseline zero-yaw operation under specific wake-inducing conditions.Crucially,the analysis reveals that using the site-specific calibrated model for optimization yields substantially better results than using a model with generic parameters,providing an additional power gain of up to 1.43%in tested scenarios.These findings underscore the critical importance of TNA estimation and site-specific model calibration for developing effective AWC strategies.The proposed integrated approach provides a robust and practical workflow for designing and pre-validating yaw control settings,offering a valuable tool for enhancing the economic performance of wind farms.展开更多
The modeling and optimization of wind farm layouts can effectively reduce the wake effect between turbine units,thereby enhancing the expected output power and avoiding negative influence.Traditional wind farm optimiz...The modeling and optimization of wind farm layouts can effectively reduce the wake effect between turbine units,thereby enhancing the expected output power and avoiding negative influence.Traditional wind farm optimization often uses idealized wake models,neglecting the influence of wind shear at different elevations,which leads to a lack of precision in estimating wake effects and fails to meet the accuracy and reliability requirements of practical engineering.To address this,we have constructed a three-dimensional 3D wind farm optimization model that incorporates elevation,utilizing a 3D wake model to better reflect real-world conditions.We aim to assess the optimization state of the algorithm and provide strong incentives at the right moments to ensure continuous evolution of the population.To this end,we propose an evolutionary adaptation degreeguided genetic algorithm based on power-law perturbation(PPGA)to adapt multidimensional conditions.We select the offshore wind power project in Nantong,Jiangsu,China,as a study example and compare PPGA with other well-performing algorithms under this practical project.Based on the actual wind condition data,the experimental results demonstrate that PPGA can effectively tackle this complex problem and achieve the best power efficiency.展开更多
基金supported by National Basic Research Program of China(No.2012CB215105).
文摘Doubly-fed induction generator(DFIG)-based wind farm has the characteristic of transient fault with low voltage ride through(LVRT)capability.A new three-phase fault direction identification method for the outgoing transmission line of the wind farm is presented.The ability of the new directional relay to differentiate between a three-phase fault in one direction or the other is obtained by using the increment of phase angle difference between the memory voltage signal and the fault current signal within a certain time,and using the amplitude variation of the fault current.It can be inferred that the fault current is supplied by the wind farm whether the phase angle differs or the current amplitude varies considerably.Different fault locations at the outgoing transmission line have been simulated by PSCAD/EMTDC to evaluate the reliability and sensitivity of the proposed technique.Results show that the new directional relay is of faster response when a three-phase fault occurs at the outgoing transmission line of a DFIG-based wind farm.
基金supported by the Special Fund of the National Priority Basic Research of China (No. 2013CB228204)the National Science Foundation of China (No. 50977021)
文摘A probabilistic equivalent method for doubly fed induction generator (DFIG) based wind farms is proposed in this paper.First,the wind farm equivalent model is assumed to be composed of three types of equivalent DFIGs with different dynamic characteristics.The structure of equivalent model remains constant,whereas the parameters change with the migration of different scenarios in the wind farm.Then,historical meteorological data are utilized to investigate the probability distribution of key equivalent parameters,such as capacity,wind speed and electrical impedance to the point of common coupling.Each type of equivalent DFIG is further clustered into several groups according to their active power output.Combinations are created to generate representative scenarios.The probabilistic equivalent model of wind farm is finally achieved after removing invalid combinations.Most matched representative scenarios can be predicted according to the real-time measurement.The equivalentmodel is applied to the probabilistic power flow calculation and the stability analysis of test systems.
文摘This paper modeled a doubly fed induction generator (DFIG) - based offshore wind farm integrated through a voltage source converter –based high voltage direct current (VSC-HVDC) transmission system, which is collected with infinite bus for small signal stability analysis. The control system of HVDC system is considered for the stability analysis. The impact of the VSC control parameters on the network stability is studied. The lineared dynamic model is employed to do small signal stability analysis by the eigenvalue analysis. The locus of the eigenvalue, which is corresponding to the oscillation model is studied. Time domain simulations conducted in Matlab/Simulink are used to validate the small signal stability analysis.
基金supported by the Science and Technology Project of China South Power Grid Co.,Ltd.under Grant No.036000KK52222044(GDKJXM20222430).
文摘This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the impact of wakes on turbine effective wind speed is analyzed,leading to a quantitative method for assessing wake interactions.Based on these interactions,a partitioning method divides the wind farm into smaller,computationally manageable zones.Subsequently,a heuristic control algorithm is developed for yaw optimization within each partition,reducing the overall computational burden associated with multi-turbine optimization.The algorithm’s effectiveness is evaluated through case studies on 11-turbine and 28-turbine wind farms,demonstrating power generation increases of 9.78%and 1.78%,respectively,compared to baseline operation.The primary innovation lies in coupling the higher-fidelity dynamic FLORIDyn wake model with a graph-based partitioning strategy and a computationally efficient heuristic optimization,enabling scalable and accurate yaw control for large wind farms,overcoming limitations associated with simplified models or centralized optimization approaches.
基金supported by the National Natural Science Foundation of China(Grants No.42471287 and 32201422)the Chinese Academy of Sciences。
文摘The share of wind and solar energy in global energy mix is rising rapidly.Despite their great potential for reducing carbon emissions,poorly planned wind and solar farms may encroach on socio-ecologically sensitive areas,threatening biodiversity and Indigenous people's traditional land uses.However,these potential risks associated with wind and solar farm development worldwide are poorly understood.Here,we evaluate the potential biodiversity and Indigenous risks from wind and solar energy development by examining the extent to which global wind and solar farms are situated within or adjacent to socio-ecologically sensitive areas.Our analysis revealed that 13,699 wind and solar farms or 14.4%of the farms'total footprint area are within protected areas,critical habitats,and Indigenous people's lands,occupying a total of 26,840 km^(2)of those socio-ecologically sensitive areas.Wind and solar farms overlap with the distribution ranges of 2,310 threatened amphibians,birds,mammals,and reptiles,accounting for 36.3%of the world's 6,362 threatened vertebrate species.The encroachment of solar and wind farms on sensitive areas mostly occurs in economically developed countries with substantial wind and solar energy facilities,while many developing countries in the tropics tend to have a higher proportion of such farms situated within sensitive areas.Compared to wind farms,solar farms pose greater risks to biodiversity and Indigenous people's lands.These findings provide valuable insights into the socio-ecological risks of wind and solar energy development and highlight the urgent need for strategic planning to mitigate the risks.
基金supported by the National Key R&D Program of China“Response-driven intelligent enhanced analysis and control for bulk power system stability”(No.2021YFB2400800)。
文摘The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.
文摘The impact of large-scale grid-connected wind farms of Doubly-fed Induction Generator (DFIG) type on power system transient stability is elaborately discussed in this paper. In accordance with an equivalent generator/converter model, the comprehensive numerical simulations with multiple wind farms of DFIG type involved are carried out to reveal the impact of wind farm on dynamic behavior of existing interconnected power system. Different load models involving nonlinear load model and induction motor model are considered during simulations. Finally, some preliminary conclusions are summarized and discussed.
基金supported by the National Key R&D Program of China(No.2022YFE0209500)the Industry-Academy cooperation project(No.E2021000435)+2 种基金the National Natural Science Foundation of China(No.41877310)the Network Information Security and Information Special Application Demonstration Project(Cultivation Project)of Chinese Academy of Sciences(No.CAS-WX2023PY-0103)the Innovative practice training program for college students of Chinese Academy of Sciences(No.117900M002)。
文摘The global demand for renewable energy has resulted in a rapid expansion of offshore wind farms(OWFs)and increased attention to the ecological impacts of OWFs on the marine ecosystem.Previous reviews mainly focused on the OWFs’impacts on individual species like birds,bats,or mammals.This review collected numerous field-measured data and simulated results to summarize the ecological impacts on phytoplankton,zooplankton,zoobenthos,fishes,and mammals from each trophic level and also analyze their interactions in the marine food chain.Phytoplankton and zooplankton are positively or adversely affected by the‘wave effect’,‘shading effect’,oxygen depletion and predation pressure,leading to a ±10% fluctuation of primary production.Although zoobenthos are threatened transiently by habitat destruction with a reduction of around 60% in biomass in the construction stage,their abundance exhibited an over 90% increase,dominated by sessile species,due to the‘reef effect’in the operation stage.Marine fishes and mammals are to endure the interferences of noise and electromagnetic,but they are also aggregated around OWFs by the‘reef effect’and‘reserve effect’.Furthermore,the complexity of marine ecosystem would increase with a promotion of the total system biomass by 40% through trophic cascade effects strengthen and resource partitioning alternation triggered by the proliferation of filter-feeders.The suitable site selection,long-term monitoring,and life-cycle-assessment of ecological impacts of OWFs that are lacking in current literature have been described in this review,as well as the carbon emission and deposition.
基金supported in part by the European Union’s Horizon 2020 research and innovation program under grant agreement No.691714
文摘The diode rectifier unit(DRU)-based high-voltage DC(DRU-HVDC) system is a promising solution for offshore wind energy transmission thanks to its compact design, high efficiency, and strong reliability. Herein we investigate the feasibility of the DRU-HVDC system considering onshore and offshore AC grid faults, DC cable faults, and internal DRU faults. To ensure safe operation during the faults, the wind turbine(WT) converters are designed to operate in either current-limiting or voltage-limiting mode to limit potential excessive overcurrent or overvoltage. Strategies for providing fault currents using WT converters during offshore AC faults to enable offshore overcurrent and differential fault protection are investigated. The DRU-HVDC system is robust against various faults, and it can automatically restore power transmission after fault isolation. Simulation results confirm the system performance under various fault conditions.
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.
文摘Reducing the operation and maintenance (O & M) cost is one of the potential actions that could reduce the cost of energy produced by offshore wind farms. This article attempts to reduce O & M cost by improving the utilization of the maintenance resources, specifically the efficient scheduling and routing of the maintenance fleet. Scheduling and routing of maintenance fleet is a non-linear optimization problem with high complexity and a number of constraints. A heuristic algorithm, Ant Colony Optimization (ACO), was modified as Multi-ACO to be used to find the optimal scheduling and routing of maintenance fleet. The numerical studies showed that the proposed methodology was effective and robust enough to find the optimal solution even if the number of offshore wind turbine increases. The suggested approaches are helpful to avoid a time-consuming process of manually planning the scheduling and routing with a presumably suboptimal outcome.
基金National Key Research and Development Program of the Ministry of Science(2018YFB1502801)Hubei Provincial Natural Science Foundation(2022CFD017)Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)。
文摘This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing.At the same time,the wind speed predicted by the EC model is also included for comparative analysis.The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A.The CMA-GD model exhibits a monthly average correlation coefficient of 0.56,root mean square error of 2.72 m s^(-1),and average absolute error of 2.11 m s^(-1).In contrast,the EC model shows a monthly average correlation coefficient of 0.51,root mean square error of 2.83 m s^(-1),and average absolute error of 2.21 m s^(-1).Conversely,in Wind Farm B,the EC model outperforms the CMA-GD model.The CMA-GD model achieves a monthly average correlation coefficient of 0.55,root mean square error of 2.61 m s^(-1),and average absolute error of 2.13 m s^(-1).By contrast,the EC model displays a monthly average correlation coefficient of 0.63,root mean square error of 2.04 m s^(-1),and average absolute error of 1.67 m s^(-1).
基金Supported by the Integration and Application Project of Meteorological Key Technologies of China Meteorological Administration(Risk Assessment of Thunder and Lightning Disaster and Application of Key Lightning Protection Technologies in Wind Farms)
文摘Firstly, characteristics of coastal wind farms were analyzed, and then lightning damage to coastal wind farms was discussed, finally main lightning protection measures were put forward from aspects of turbine blades, engine rooms and overvoltage protection. Besides conventional light- ning protection technology, local lightning protection, pre-discharge and lightning motoring and early warning techniques should be used to protect coastal wind farms against lightning.
基金supported by the National Key Research and Develop-ment Program of China(Grant No.2021YFC3201201)the National Natural Science Foundation of China(Grant No.32071582)+2 种基金JCS consid-ers this work a contribution to Center for Ecological Dynamics in a Novel Biosphere(ECONOVO)funded by Danish National Research Founda-tion(Grant No.DNRF173 to JCS)his Investigator project“Biodi-versity Dynamics in a Changing World”,funded by VILLUM FONDEN(Grant No.16549).
文摘Wind power has been developing rapidly as a key measure to mitigate human-driven global warming.The under-standing of the development and impacts of wind farms on local climate and vegetation is of great importance for their rational use but is still limited.In this study,we combined remote sensing and on-site investigations to identify wind farm locations in Inner Mongolia and performed landscape pattern analyses using Fragstats.We explored the impacts of wind farms on land surface temperature(LST)and vegetation net primary productivity(NPP)between 1990 and 2020 by contrasting these metrics in wind farms with those in non-wind farm areas.The results showed that the area of wind farms increased rapidly from 1.2 km2 in 1990 to 10,755 km2 in 2020.Spatially,wind farms are mainly clustered in three aggregation areas in the center.Further,wind farms increased nighttime LST,with a mean value of 0.23℃,but had minor impacts on the daytime LST.Moreover,wind farms caused a decline in NPP,especially over forest areas,with an average reduction of 12.37 GC/m^(2).Given the impact of wind farms on LST and NPP,we suggest that the development of wind farms should fully consider their direct and potential impacts.This study provides scientific guidance on the spatial pattern of future wind farms.
文摘The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.
基金funded by King Fahd University of Petroleum&Minerals,Saudi Arabia under IRC-SES grant#INRE 2217.
文摘Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.
基金supported by the National Natural Science Foundation of China under Grant 52077030.
文摘As a new dynamic reactive power compensator,the grid-forming Static Var Generator(GF-SVG)can not only provide reactive power-voltage support,but also has inertial support capability.It has been experimentally deployed in many wind farms.However,studies have shown that when the three-phase short-circuit fault occurs in the wind farm,the transient overcurrent during the fault occurrence and fault clearance is suppressed,making it difficult for GF-SVG to use traditional fixed virtual impedance.Aiming at the problem,firstly,the influence of virtual reactance on control stability is analyzed using the GF-SVG’s current open-loop transfer function.Secondly,based on the existing current limitation strategies of GF-SVG,an adaptive virtual reactance current limitation strategy suitable for symmetrical faults of the power grid is proposed,which limits GF-SVG’s transient overcurrent during fault occurrence and fault clearance stage to the tolerance range of GF-SVG’s power devices.Based on the GF-SVG’s active power loop and reactive power loop small signal models,the availability of the proposed adaptive virtual reactance in suppressing the DC voltage drop of GF-SVG is analyzed,and shortening the transient overvoltage recovery time of the wind farm after the fault clearance is also discussed.Finally,electromagnetic simulation proves the effectiveness and correctness of the proposed adaptive current limitation method.
基金funded by the Science and Technology Project of State Grid Corporation,grant number 5500-202329500A-3-2-ZN,funding data 2023.10–2025.12.
文摘Aiming at the problems of large fluctuation of output active power and poor control performance in the process of frequency support of an energy-storage-type static-var-generator(ESVG),the adaptive adjustment control method for its active-loop parameters is used to realize thewind-farmfrequency support,which has become the current research hotspot.Taking the ESVG with a supercapacitor on the DC side as the research object,the influence trend of the change of virtual rotation inertia and virtual damping coefficient on its virtual angular velocity and power angle is analyzed.Then,the constraint relationship between the equivalent virtual inertia time constant of the supercapacitor and the virtual rotation inertia of the ESVG is clarified.Then,combined with the second-order response characteristics of the ESVG power control loop,the selection principles of the frequency modulation coefficient,the virtual rotation inertia,and the virtual damping coefficient are determined.An ESVG adjustment control method,considering the adaptive adjustment of the active loop parameters of the supercapacitor equivalent inertia,is proposed.While ensuring the frequency support capability of the ESVG,the fluctuation degree of its output active power and the virtual angular velocity are suppressed,and the proposed adjustment method also improves the stability of the ESVG control system and the frequency support capability for the wind farm.Finally,the simulation verifies the correctness of the theoretical analysis and the effectiveness of the proposed strategy.
基金the Science and Technology Project of China South Power Grid Co., Ltd. under Grant No. 036000KK52222044 (GDKJXM20222430).
文摘Wake effects in large-scalewind farms significantly reduce energy capture efficiency.ActiveWakeControl(AWC),particularly through intentional yaw misalignment of upstream turbines,has emerged as a promising strategy to mitigate these losses by redirecting wakes away from downstream turbines.However,the effectiveness of yaw-based AWC is highly dependent on the accuracy of the underlying wake prediction models,which often require site-specific adjustments to reflect local atmospheric conditions and turbine characteristics.This paper presents an integrated,data-driven framework tomaximize wind farmpower output.Themethodology consists of three key stages.First,a practical simulation-assisted matching method is developed to estimate the True North Alignment(TNA)of each turbine using historical Supervisory Control and Data Acquisition(SCADA)data,resolving a common source of operational uncertainty.Second,key wake expansion parameters of the Floris engineering wake model are calibrated using site-specific SCADA power data,tailoring the model to the JibeiWind Farm in China.Finally,using this calibrated model,the derivative-free solver NOMAD is employed to determine the optimal yaw angle settings for an 11-turbine cluster under various wind conditions.Simulation studies,based on real operational scenarios,demonstrate the effectiveness of the proposed framework.The optimized yaw control strategies achieved total power output gains of up to 5.4%compared to the baseline zero-yaw operation under specific wake-inducing conditions.Crucially,the analysis reveals that using the site-specific calibrated model for optimization yields substantially better results than using a model with generic parameters,providing an additional power gain of up to 1.43%in tested scenarios.These findings underscore the critical importance of TNA estimation and site-specific model calibration for developing effective AWC strategies.The proposed integrated approach provides a robust and practical workflow for designing and pre-validating yaw control settings,offering a valuable tool for enhancing the economic performance of wind farms.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP23K24899)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145).
文摘The modeling and optimization of wind farm layouts can effectively reduce the wake effect between turbine units,thereby enhancing the expected output power and avoiding negative influence.Traditional wind farm optimization often uses idealized wake models,neglecting the influence of wind shear at different elevations,which leads to a lack of precision in estimating wake effects and fails to meet the accuracy and reliability requirements of practical engineering.To address this,we have constructed a three-dimensional 3D wind farm optimization model that incorporates elevation,utilizing a 3D wake model to better reflect real-world conditions.We aim to assess the optimization state of the algorithm and provide strong incentives at the right moments to ensure continuous evolution of the population.To this end,we propose an evolutionary adaptation degreeguided genetic algorithm based on power-law perturbation(PPGA)to adapt multidimensional conditions.We select the offshore wind power project in Nantong,Jiangsu,China,as a study example and compare PPGA with other well-performing algorithms under this practical project.Based on the actual wind condition data,the experimental results demonstrate that PPGA can effectively tackle this complex problem and achieve the best power efficiency.