Methods for promoting product and reducing energy consumption in a solvent dewaxing device are putforward.Then,the authors mainly discuss about adaptive database,mathematical modeling,mathematical op-timized control a...Methods for promoting product and reducing energy consumption in a solvent dewaxing device are putforward.Then,the authors mainly discuss about adaptive database,mathematical modeling,mathematical op-timized control algorithm,expert optimized control system and intelligent alarming system etc.At last,hard-ware and software of the intelligent optimized control system are introduced.Field test is finally chosen for thisstudy and proved that the intelligent optimized control system is effective.展开更多
The microstructure and intermolecular interaction of toluene(TOL), methyl ethyl ketone(MEK), lube oil, TOL-MEK solvents, and TOL-MEK-oil solutions were studied by molecular simulation. Some simulation results agree we...The microstructure and intermolecular interaction of toluene(TOL), methyl ethyl ketone(MEK), lube oil, TOL-MEK solvents, and TOL-MEK-oil solutions were studied by molecular simulation. Some simulation results agree well with the experiment, which suggests that the simulation method we adopted is a powerful tool to obtain microscopic property of the systems. The density functional theory(DFT) calculation results suggest that the interaction group of toluene and MEK is the methyl group of theirs. And the interaction between toluene and MEK is attractive. The contribution of van der Waals interaction to the change of total energy of the TOL-MEK system is major, and the second is electrostatic interaction. Molecular dynamics(MD) simulation analyzes the solubility parameter(SP), mean square displacement(MSD), radius of gyration(RG), and radial distribution function(RDF) of solvents and solutions. The results are that the solubility parameter of the blend solvents decreases with temperature, and increases with the proportion of methyl ethyl ketone in principle, and that of lube oil also trends to decrease with temperature. The MSD results give one reason of why the transmission rate of MEK is greater in membrane separation process of recovery toluene and MEK and the permeation flux increases with MEK:TOL. The RG analysis predicts that the permeability of the oil molecule is likely to rise with temperature during dewaxing solvent recovery process by membrane. The analysis of RDFs shows that the intermolecular interaction of C···C, O···O and C···O makes a major contribution to the total interaction energy.展开更多
This work was mainly concentrated on the removal of naphthenic acids(NAs) from dewaxed vacuum gas oil(VGO) by adsorption using a commercial grade activated clay(AC) adsorption during lube base oil refining. The NAs in...This work was mainly concentrated on the removal of naphthenic acids(NAs) from dewaxed vacuum gas oil(VGO) by adsorption using a commercial grade activated clay(AC) adsorption during lube base oil refining. The NAs in dewaxed VGO cut-4 were identified by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS). The AC sample from a refinery was characterized by XRD, BET, TG/DTA, and SEM. A series of experiments were carried out to investigate the performance of NAs adsorption by AC using a batch adsorption technique, in which some key experimental parameters such as temperature, contact time, initial concentration of NA in oil sample as well as the dosage of adsorbent were investigated. Equilibrium isotherms were analyzed using the Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich(D-R) adsorption models. The pseudo-first order, the pseudo-second order, and intraparticle diffusion models were employed to describe the kinetics data. The results revealed that the D-R isotherm provided a better fit to the experimental data than other isotherms, and the adsorption kinetics followed the pseudo-first order kinetic equation. The thermodynamic data indicated that the adsorption process was feasible and spontaneous as an endothermic process. The results could provide a clear understanding of the NAs adsorption by AC during lube base oil processing at refineries.展开更多
基金Supported by the Eighth Five Year plan Research Program(No.85-720-10-21).
文摘Methods for promoting product and reducing energy consumption in a solvent dewaxing device are putforward.Then,the authors mainly discuss about adaptive database,mathematical modeling,mathematical op-timized control algorithm,expert optimized control system and intelligent alarming system etc.At last,hard-ware and software of the intelligent optimized control system are introduced.Field test is finally chosen for thisstudy and proved that the intelligent optimized control system is effective.
基金supported by Beijing Key Laboratory of Energy Environmental Catalysis Beijing University of Chemical Technology Beijing of ChinaYanshan Branch of Beijing Research Institute of Chemical Industry,Sinopec
文摘The microstructure and intermolecular interaction of toluene(TOL), methyl ethyl ketone(MEK), lube oil, TOL-MEK solvents, and TOL-MEK-oil solutions were studied by molecular simulation. Some simulation results agree well with the experiment, which suggests that the simulation method we adopted is a powerful tool to obtain microscopic property of the systems. The density functional theory(DFT) calculation results suggest that the interaction group of toluene and MEK is the methyl group of theirs. And the interaction between toluene and MEK is attractive. The contribution of van der Waals interaction to the change of total energy of the TOL-MEK system is major, and the second is electrostatic interaction. Molecular dynamics(MD) simulation analyzes the solubility parameter(SP), mean square displacement(MSD), radius of gyration(RG), and radial distribution function(RDF) of solvents and solutions. The results are that the solubility parameter of the blend solvents decreases with temperature, and increases with the proportion of methyl ethyl ketone in principle, and that of lube oil also trends to decrease with temperature. The MSD results give one reason of why the transmission rate of MEK is greater in membrane separation process of recovery toluene and MEK and the permeation flux increases with MEK:TOL. The RG analysis predicts that the permeability of the oil molecule is likely to rise with temperature during dewaxing solvent recovery process by membrane. The analysis of RDFs shows that the intermolecular interaction of C···C, O···O and C···O makes a major contribution to the total interaction energy.
基金supported by the Young Talent Fund of University Association for Science and Technology in Shaanxi, China (No. 20160222)
文摘This work was mainly concentrated on the removal of naphthenic acids(NAs) from dewaxed vacuum gas oil(VGO) by adsorption using a commercial grade activated clay(AC) adsorption during lube base oil refining. The NAs in dewaxed VGO cut-4 were identified by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS). The AC sample from a refinery was characterized by XRD, BET, TG/DTA, and SEM. A series of experiments were carried out to investigate the performance of NAs adsorption by AC using a batch adsorption technique, in which some key experimental parameters such as temperature, contact time, initial concentration of NA in oil sample as well as the dosage of adsorbent were investigated. Equilibrium isotherms were analyzed using the Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich(D-R) adsorption models. The pseudo-first order, the pseudo-second order, and intraparticle diffusion models were employed to describe the kinetics data. The results revealed that the D-R isotherm provided a better fit to the experimental data than other isotherms, and the adsorption kinetics followed the pseudo-first order kinetic equation. The thermodynamic data indicated that the adsorption process was feasible and spontaneous as an endothermic process. The results could provide a clear understanding of the NAs adsorption by AC during lube base oil processing at refineries.