Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding ...Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.展开更多
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical...In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.展开更多
To explore the effects of relative humidity(RH)on the quality of walnut kernels and establish a rapid,effective method/model for identifying their deterioration degree,walnut kernels were stored at 45℃for 90 days und...To explore the effects of relative humidity(RH)on the quality of walnut kernels and establish a rapid,effective method/model for identifying their deterioration degree,walnut kernels were stored at 45℃for 90 days under different RH conditions(35%,50%,65%and 80%)in this study.Every 15 days,changes in the kernels'color,acid values(AV),peroxide values(POV),fatty acid composition,contents of total phenols and soluble quinones,synchronous fluorescence spectra,and the compositions/contents of volatile organic compounds(VOCs)were analyzed.Partial least squares discriminant analysis(PLS-DA)and variable importance in projection(VIP)were used to conduct differential analysis of VOCs.The deterioration degree of walnut kernels was predicted using Pearson correlation analysis and a Back Propagation Neural Network(BPNN)model.The results showed that RH had a significant effect on the quality of walnut kernels,with 65%RH being the suitable storage condition for them.According to gas chromatography-mass spectrometry(GC-MS)analysis,a total of 40,34,23 and 17 characteristic VOCs were identified in the walnut kernels stored at RH of 35%,50%,65%and 80%,respectively.Among these VOCs,hexanal,1-octen-3-ol,4,5-dimethyltetrahydrofuran-2-one and DL-pantolactone were identified as potential volatile deterioration markers(PVDMs).Based on the POV limit standard of 1.0 mmol/kg for walnut oil,the threshold concentrations of these four PVDMs were 500-1000,50-100,10-15,and 30-60μg/100g,respectively.This research provides a reference for the quality monitoring and evaluation of walnut kernels during storage.展开更多
Dangerous rock masses in cold regions subjected to repeated freeze–thaw cycles can cause progressive deterioration in structural planes and rock mechanical properties,which significantly reduces the overall stability...Dangerous rock masses in cold regions subjected to repeated freeze–thaw cycles can cause progressive deterioration in structural planes and rock mechanical properties,which significantly reduces the overall stability and often triggers collapses or landslides.Existing studies focus mostly on singlescale or single-factor analyses but cannot fully capture the coupled mechanisms driving instability under freeze-thaw conditions.This study aimed to establish a theoretical framework to quantitatively characterize the evolution of rock mass stability,thereby providing a sound basis for hazard prediction and prevention.By integrating limit equilibrium theory with rock frost heave and circular hole expansion theory,mechanical models for sliding-and toppling-type dangerous rock masses were established.Three key factors were incorporated:frost heave forces acting on throughgoing structural planes,rock property deterioration in nonpenetrative sections,and progressive freezing depth development.A theoretical relationship between the stability coefficient and the number of freeze-thaw cycles was derived.By considering the Zimei Peaks rock masses in Gansu Province as the case study and conducting parametric analyses,the results revealed that the stability coefficient rapidly decreases during the initial cycles,followed by a slower decrease and eventual stabilization.The coefficient decreased 4.5 times more during the first 15 cycles than during the subsequent 15 cycles.Moreover,stability degradation was strongly influenced by the freezing temperature,initial porosity,and rock debris loss ratio,with critical thresholds determined at a 3.8%porosity and a 0.83 debris loss ratio.The findings indicated that stability deterioration is governed by the coupled effects of frost heave loading,microstructural damage accumulation,and freezing depth development,with clear stagedependent and threshold-driven patterns.This work provides not only a quantitative explanation of instability mechanisms in cold-region rock masses but also practical guidance for engineering stability assessment and disaster mitigation.展开更多
The rock masses in the hydro-fluctuation zone of reservoir banks sustain wettingdrying cycles(WDC),thereby affecting the stability of the reservoir bank slope.In this paper,rock masses with argillaceous siltstone and ...The rock masses in the hydro-fluctuation zone of reservoir banks sustain wettingdrying cycles(WDC),thereby affecting the stability of the reservoir bank slope.In this paper,rock masses with argillaceous siltstone and silty mudstone interbedded in Badong Formation were taken as the research object to investigate the variation of strength parameters of soft and hard interbedded rock masses with WDC and dip angle through laboratory experiments and numerical experiments.Some attempts were made to reveal the mechanical properties deterioration mechanism of interbedded rock masses by quantitatively analyzing the contribution of strength parameters deterioration of hard rocks,soft rocks,and bedding planes to the strength parameters deterioration of rock masses.The results indicate that the logarithmic function could be used to describe the deterioration of each strength parameter of both argillaceous siltstone and silty mudstone and bedding plane with the number of WDC.The strength parameters of interbedded rock masses decrease as the number of WDC increases,with the largest decrease after the first cycle and then slowing down in the later cycles.The strength parameters initially decrease and then increase as the dip angles increase.The impact of deteriorated strength parameters of bedding planes and rocks on the deterioration of strength parameters of interbedded rock masses differs significantly with the dip angle,which can be divided into four typical ranges of different controlling factors.展开更多
Determining the high-temperature history of rocks and evaluating their associated deterioration levels are essential for the stable and efficient functioning of geological engineering projects.This research introduces...Determining the high-temperature history of rocks and evaluating their associated deterioration levels are essential for the stable and efficient functioning of geological engineering projects.This research introduces a precise,time-efficient,and cost-effective approach that integrates metal intrusion technology,backscattered electron(BSE)imaging,and the ResNet50 deep-learning algorithm to differentiate high-temperature histories.The damage characteristics in the microstructure of rocks subjected to different temperature treatments are successfully extracted.The results show that,compared to previously reported convolutional neural networks(CNN)training and classification methods,the proposed ResNet50 algorithm improves identification accuracy by over 10%,achieving up to 98%accuracy in classifying degraded sandstone treated at temperatures ranging from 25℃ to 1000℃.More importantly,through feature extraction of sandstone specimens after high-temperature deterioration,the ResNet50 algorithm demonstrates a superior ability to locate microscopic damage characteristics associated with different temperatures-an achievement rarely reported in previous research.For sandstone specimens exposed to 200℃-600℃,the extracted features primarily highlight the opening of primary pores and changes in rock particle morphology.In contrast,as the treated temperature exceeds 600℃,the extracted features predominantly reflect thermal damage fracture,whose area first diffuses and then concentrates,aligning closely with the thermal damage theory of rock.The findings of this study not only advance a deep learning-based approach for identifying rock deterioration after high-temperature exposure but also deepen the understanding of the relation between rock microstructural characteristics and high-temperature deterioration.展开更多
To reveal the deterioration mechanism of coal-rock assemblages under chemical corrosion and dynamic loading,chemical corrosion and dynamic impact experiments were conducted.Under different chemical corrosion condition...To reveal the deterioration mechanism of coal-rock assemblages under chemical corrosion and dynamic loading,chemical corrosion and dynamic impact experiments were conducted.Under different chemical corrosion conditions,the weakening characteristics,observable characteristics,softening characteristics of the dynamic parameters,dynamic failure characteristics,dynamic failure forms and dynamic microscopic characteristics were analyzed.Under each corrosion condition,the dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity tended to decrease with immersing time.The dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity exhibited an inverted U-shaped trend.Under dynamic impact,the failure process of acidly corroded samples can be divided into the following stages:the initial stage,elastic energy accumulation stage,local failure of coal and secondary rock crack expansion stage,coal fragment ejection stage,rock spalling stage and complete instability stage.Under dynamic impact,failure modes exist:coal crushing failure,rock fragmenting failure,rock splitting failure and full splitting failure.After impact failure,sample fragments are distributed in powder,granular,cone and block forms.Based on Zhu-Wang-Tang nonlinear viscoelastic properties,a model considering chemical corrosion and impact damage was proposed.The combined effects of chemical and impact-induced damage on the dynamic mechanical properties of coal-rock assemblages were systematically analyzed.展开更多
Soft rock is one of the common geological conditions in coal mine underground water reservoir engineering.The cross-scale correlation analysis of water erosion soft lithology deterioration is very important for the sa...Soft rock is one of the common geological conditions in coal mine underground water reservoir engineering.The cross-scale correlation analysis of water erosion soft lithology deterioration is very important for the safety and stability of coal mine underground reservoir(CMUR)engineering.To address the issues of grain crowding and segmentation difficulties in cross-scale corelation analysis,as well as the limitations of traditional etching methods,this study proposes an image grain segmentation method based on deep learning algorithms,utilizing scanning electron microscopy and image process-ing techniques.The method successfully segments crowded grains and eliminates the interference from misplaced particles.In addition,indoor uniaxial compression tests were conducted to obtain the mechanical properties of sandstone samples with different water content.By quantitatively characterizing the macroscopic and microscopic deterioration degree of red sandstone samples with different water contents,the relationship between the strength changes of rock samples and the pet-rographic parameters such as grain size and grain shape is analyzed,and the influence law of soft lithology deterioration in CMUR engineering is revealed.The results indicate:(1)Water significantly weakens the mechanical properties and stability of soft rock.With increasing water content,the strength of sandstone samples continuously decreases,and the failure mode transitions from brittle to ductile failure.(2)The deterioration of micro-micro structures is the main cause of the decrease in mechanical properties of water-eroded soft rock.Grain size,grain area,and aspect ratio are negatively correlated with water content,indicating that hydrophilic minerals in soft rock dissolve under the action of water,leading to rock damage.(3)Grain size,area,and aspect ratio can serve as significant indicators for quantifying the strength changes of water-eroded soft rock.The research findings can be applied to stability assessment and disaster prevention in CMUR engineering.展开更多
As one of the major high-speed railway ballastless track structures in China,CRTSIII slab ballastless track has been laid for more than 6500 km.However,there are no detailed studies on its track irregularity deteriora...As one of the major high-speed railway ballastless track structures in China,CRTSIII slab ballastless track has been laid for more than 6500 km.However,there are no detailed studies on its track irregularity deterioration throughout extended service periods,which may threaten the safety and stability of high-speed vehicles(HSV).In this study,a long-term tracking detection of CRTSIII slab ballastless track irregularities has been conducted,revealing its annual evolution law.An HSV-track coupled dynamics model was established to investigate the HSV dynamic responses under annual evolution of track irregularities.Considering the potential deterioration of track irregularities to extremely bad condition,the recommended classified limits for irregularity are proposed by analyzing the limit-exceeding probability of the safety and stability indexes of HSV.The results show that:taking 10 m wavelength as a demarcation,longer-wavelength irregularities exhibit larger amplitudes,faster evolution rates and a linear increasing trend,primarily affecting the stability of HSV.Conversely,shorter-wavelength irregularities exhibit smaller amplitudes and an insignificant evolution trend,predominantly affecting the safety of HSV.Furthermore,the periodic irregularity induced by the arching of 32 m simply-supported beam bridge should be paid closer attention to,as their evolution rate significantly surpasses that of irregularities at other wavelengths.展开更多
In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonan...In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonance (NMR) technique was applied tothe measurement of sandstone specimens and analysis of the magnetic resonance imaging. Then, the fractal theory was employed tocompute the fractal dimension values of pore development of rocks after different freeze-thaw cycles. The results show that the massand porosity of rocks grow with the increase of freeze-thaw cycles. According to the NMR T2 distribution of sandstones, the poresizes of rock specimens increase after 180 freeze-thaw cycles, especially that of the medium-sized and small-sized pores. The spatialdistribution of sandstone pores after freeze-thaw cycles has fractal features within certain range, and the fractal dimension ofsandstones tends to increase gradually.展开更多
[Objective] This study aimed to analyze the quantitative trait loci (QTLs) of grain storage durability for maize under controlled deterioration conditions by using SSR markers. [Method] The recombinant inbred line p...[Objective] This study aimed to analyze the quantitative trait loci (QTLs) of grain storage durability for maize under controlled deterioration conditions by using SSR markers. [Method] The recombinant inbred line population F 2 derived from the cross of shen 137/02-50 was used to do the simple sequence repeats (SSRs) and QTL analysis. [Result] The 2 parents showed good polymorphisms. Three loci were detected on chromosome 1, chromosome 6 and chromosome 9, accounting for 41.2% of total phenotypic. [Conclusion] This study provided theoretical basis for using molecular marker to assist the breeding of storage durable maize varieties.展开更多
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ...A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration展开更多
Evolutionary algorithm is applied as an optimization method in this paper. The increment of cumulative failure probability of fatigue, inspection cost, inspection interval and means are adopted as limiting condition, ...Evolutionary algorithm is applied as an optimization method in this paper. The increment of cumulative failure probability of fatigue, inspection cost, inspection interval and means are adopted as limiting condition, objective function and optimization variable respectively. According to fatigue characteristics of ship structure, the optimization research of inspecting fatigue deteriorating is carried out. The optimal inspection planning of minimal inspection cost is chosen. An example of computation and comparison of inspection plans is given. The results demonstrate that an optimal inspection plan considering security and economics can be chosen by the means in this paper.展开更多
Seed deterioration is an irresistible physiological phenomenon. The aim to study seed deterioration is to see if seed deterioration can be retarded artificially and the higher seed vigor of fine varieties be maintaine...Seed deterioration is an irresistible physiological phenomenon. The aim to study seed deterioration is to see if seed deterioration can be retarded artificially and the higher seed vigor of fine varieties be maintained. The change of seed deterioration occurs in almost every system, and affects many kinds of enzyme and almost all organcllc, as a result, the seed loses its vigor. The reason of seed deterioration and the lost of seed vigor are mainly studied and discussed in this paper. According to the external and internal two kinds of theory advanced by E. H. Roberts, Much deep discussions are made from the view of biochemistry.展开更多
The Sound and the Fury is William Faulkner's greatest work; four narrators tell the story of the deterioration of the Compson family from different perspective, exploring the cause of deterioration indirectly. The...The Sound and the Fury is William Faulkner's greatest work; four narrators tell the story of the deterioration of the Compson family from different perspective, exploring the cause of deterioration indirectly. The novel centers on Caddy's moral decay from different perspective. The thesis analyzes the processing fall of the Compson family through the analysis of three characters, Caddy, Quentin, and Jason. Caddy's deterioration is closely related to her loss of virginity, and her impending wedding causes Quentin to commit suicide who loves her deeply and possessively. However, Jason is heartless who he does not care his family. His tragedy lies in the decay of human nature. The thesis gives the general cause of the downfall of the family and readers will have a general concept of the family's deterioration.展开更多
The English language has been deteriorating because of the modern e-mail and chat room language abbreviations,in corporation of different dialects depending on culture,and the inappropriate use of words as well as inc...The English language has been deteriorating because of the modern e-mail and chat room language abbreviations,in corporation of different dialects depending on culture,and the inappropriate use of words as well as incorrect spelling.If we want to keep English language from deterioration,we should take advantage of the advances in technology and to learn about other cultures dialects,but we should keep the proper written and spoken English in mind.展开更多
The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deteriorati...The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deterioration along the circumferential direction.The governing equations of mass,momentum and energy have been solved using the pressure-based segregated solver based on the finite volume method.The re-normalization group(RNG)k-εturbulence model with an enhanced wall treatment was selected.Considering the heat conduction in the solid wall,the mechanism of heat transfer deterioration and the buoyancy effect on deteriorated heat transfer were discussed.The evolution of secondary flow was analyzed.Effects of the outer-wall heat flux,mass flux,pressure and tube thermal conductivity on heat transfer were investigated.Moreover,the buoyancy criterion and the heat transfer correlation were obtained.Results indicate that the poor flow performance of near-wall fluid causes the pseudo-film boiling,further leads to the heat transfer deterioration.The strong buoyancy has an effect of enhancing the heat transfer at the bottom of tube,and weakening the heat transfer at the top of tube,which results in the non-uniform inner-wall temperature and heat flux distributions.Decreasing the ratio of outer-wall heat flux and mass flux,increasing the pressure could weaken the heat transfer difference along the circumferential direction,while the effect of thermal conductivity of tube on the circumferential parameters distributions is more complicated.When the buoyancy criterion of(Grq/Grth)max≤0.8 is satisfied,the effect of buoyancy could be ignored.The new correlations work well for non-uniform heat transfer predictions.展开更多
To relieve the increasing traffic load, many early built highways need to be widened or reconstructed. The rapid performance detection to existing subgrades is important to their reasonable evaluation and maximized ut...To relieve the increasing traffic load, many early built highways need to be widened or reconstructed. The rapid performance detection to existing subgrades is important to their reasonable evaluation and maximized utilization. Based on five kinds of soils taken from an existing highway in southern China, three commonly detecting methods were used to determine their moisture contents, compaction degrees and resilient moduli. The results showed that the measured moisture contents were greater than the design value, and the compaction degrees decreased sharply compared to the original ones. The moisture and heat exchange produced a decrease in the resilient modulus of plate loading test(PLT) from the standard 60 MPa down to 40 MPa. Afterwards, the portable falling weight deflectometer(PFWD) and dynamic cone penetrometer(DCP) were used to evaluate the subgrade performances. The measured PFWD moduli and the DCP penetration rates were correlated with the resilient moduli of PLT, deflections of the Beckman beam test, compaction degrees and moisture contents. The correlation analysis indicates that both of two methods are suitable in rapid detecting subgrade performances, but PFWD method is more recommended for it has higher accuracy and efficiency.展开更多
A stress-strength structural reliability model was proposed with a stochastic strength aging deterioration process. In structural engineering,the deterioration of structure's strength should be the total of the de...A stress-strength structural reliability model was proposed with a stochastic strength aging deterioration process. In structural engineering,the deterioration of structure's strength should be the total of the deterioration owing to continual wear, fatigue,corrosion,etc.,and the abrupt deterioration as a result of randomly variable loads. The deterioration of structure's strength should be influenced by both the internal deterioration owing to direct wear and the external deterioration due to randomly variable loads.Meanwhile,the load process was given as Poisson square wave process. The reliability was derived using stress-strength interference theory. In particular,the reliability was also given when random variables followed the normal distribution.展开更多
Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipita...Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipitation on the deterioration process. In view of this, the remoulded soil specimens were mixed with three kinds of salts(i.e., NaCl, Na_2SO_4 and their mixture) with different salt concentrations, and the specimens were kept in environment cabinet for undergoing different wet-dry cycles. After each cycle, the ultrasound velocity measurements were employed to monitor the deterioration process. For the specimens that have suffered three wet-dry cycles, the mechanical properties(i.e. shear strength and compression strength) were determined to evaluate the degree of deterioration. Furthermore, considering the realistic conservation environment of earthen sites, mechanical stability of these specimens against sediment-carrying wind erosion was conducted in a wind tunnel. These experiments results indicate that the overall average velocities of the specimens after the third cycle are significantly lower than those subjected to only one cycle. Ultrasound velocity, mechanical strength and wind erosion rate decrease when salt content increases. However, the internal friction angle increases firstly, and then decreases with the increase in salt content added to the specimens. Na_2SO_4 contributes most of the surface deterioration, while NaCl plays little role in the deterioration. The damage potential of the salt mixture is less obvious and largely dependent on the crystallisation location.展开更多
基金funding support from the NSFC Key Projects of International Cooperation and Exchanges (Grant No.42020104006)the National Key Research and Development Program of China (Grant No.2023YFC3007001)the National Natural Science Foundation of China (Grant No.42307227).
文摘Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.
基金funding support from the National Natural Science Foundation of China(Grant No.12172019).
文摘In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.
基金Anhui Province Scientific and Technological Research Project(202423110050025)National Key Research and Development Project(2023YFD2100400)。
文摘To explore the effects of relative humidity(RH)on the quality of walnut kernels and establish a rapid,effective method/model for identifying their deterioration degree,walnut kernels were stored at 45℃for 90 days under different RH conditions(35%,50%,65%and 80%)in this study.Every 15 days,changes in the kernels'color,acid values(AV),peroxide values(POV),fatty acid composition,contents of total phenols and soluble quinones,synchronous fluorescence spectra,and the compositions/contents of volatile organic compounds(VOCs)were analyzed.Partial least squares discriminant analysis(PLS-DA)and variable importance in projection(VIP)were used to conduct differential analysis of VOCs.The deterioration degree of walnut kernels was predicted using Pearson correlation analysis and a Back Propagation Neural Network(BPNN)model.The results showed that RH had a significant effect on the quality of walnut kernels,with 65%RH being the suitable storage condition for them.According to gas chromatography-mass spectrometry(GC-MS)analysis,a total of 40,34,23 and 17 characteristic VOCs were identified in the walnut kernels stored at RH of 35%,50%,65%and 80%,respectively.Among these VOCs,hexanal,1-octen-3-ol,4,5-dimethyltetrahydrofuran-2-one and DL-pantolactone were identified as potential volatile deterioration markers(PVDMs).Based on the POV limit standard of 1.0 mmol/kg for walnut oil,the threshold concentrations of these four PVDMs were 500-1000,50-100,10-15,and 30-60μg/100g,respectively.This research provides a reference for the quality monitoring and evaluation of walnut kernels during storage.
基金the financial support provided by the Major Science and Technology Project of Xinjiang Uygur Autonomous Region(Grant NO.2024A01003)the National Natural Science Foundation of China(Grant NO.51508556)+3 种基金the Key Support Project of the National Natural Science Foundation of China Joint Fund(Grant No.U24B2039)the Natural Science Foundation of Jiangxi Province(Grant NO.20232BAB203079,20224BAB213045)Program of China Scholarship Council(Grant NO.202406430056)the Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMTB)(Grant NO.BBJ2025081)。
文摘Dangerous rock masses in cold regions subjected to repeated freeze–thaw cycles can cause progressive deterioration in structural planes and rock mechanical properties,which significantly reduces the overall stability and often triggers collapses or landslides.Existing studies focus mostly on singlescale or single-factor analyses but cannot fully capture the coupled mechanisms driving instability under freeze-thaw conditions.This study aimed to establish a theoretical framework to quantitatively characterize the evolution of rock mass stability,thereby providing a sound basis for hazard prediction and prevention.By integrating limit equilibrium theory with rock frost heave and circular hole expansion theory,mechanical models for sliding-and toppling-type dangerous rock masses were established.Three key factors were incorporated:frost heave forces acting on throughgoing structural planes,rock property deterioration in nonpenetrative sections,and progressive freezing depth development.A theoretical relationship between the stability coefficient and the number of freeze-thaw cycles was derived.By considering the Zimei Peaks rock masses in Gansu Province as the case study and conducting parametric analyses,the results revealed that the stability coefficient rapidly decreases during the initial cycles,followed by a slower decrease and eventual stabilization.The coefficient decreased 4.5 times more during the first 15 cycles than during the subsequent 15 cycles.Moreover,stability degradation was strongly influenced by the freezing temperature,initial porosity,and rock debris loss ratio,with critical thresholds determined at a 3.8%porosity and a 0.83 debris loss ratio.The findings indicated that stability deterioration is governed by the coupled effects of frost heave loading,microstructural damage accumulation,and freezing depth development,with clear stagedependent and threshold-driven patterns.This work provides not only a quantitative explanation of instability mechanisms in cold-region rock masses but also practical guidance for engineering stability assessment and disaster mitigation.
基金supported by the Chinese National Key R&D Program(No.2022YFC3080200)the Chinese National Natural Science Foundation(No.42090054)。
文摘The rock masses in the hydro-fluctuation zone of reservoir banks sustain wettingdrying cycles(WDC),thereby affecting the stability of the reservoir bank slope.In this paper,rock masses with argillaceous siltstone and silty mudstone interbedded in Badong Formation were taken as the research object to investigate the variation of strength parameters of soft and hard interbedded rock masses with WDC and dip angle through laboratory experiments and numerical experiments.Some attempts were made to reveal the mechanical properties deterioration mechanism of interbedded rock masses by quantitatively analyzing the contribution of strength parameters deterioration of hard rocks,soft rocks,and bedding planes to the strength parameters deterioration of rock masses.The results indicate that the logarithmic function could be used to describe the deterioration of each strength parameter of both argillaceous siltstone and silty mudstone and bedding plane with the number of WDC.The strength parameters of interbedded rock masses decrease as the number of WDC increases,with the largest decrease after the first cycle and then slowing down in the later cycles.The strength parameters initially decrease and then increase as the dip angles increase.The impact of deteriorated strength parameters of bedding planes and rocks on the deterioration of strength parameters of interbedded rock masses differs significantly with the dip angle,which can be divided into four typical ranges of different controlling factors.
基金supported by the National Natural Science Foundation of China(Grant Nos.52408271 and 52174092)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230615).
文摘Determining the high-temperature history of rocks and evaluating their associated deterioration levels are essential for the stable and efficient functioning of geological engineering projects.This research introduces a precise,time-efficient,and cost-effective approach that integrates metal intrusion technology,backscattered electron(BSE)imaging,and the ResNet50 deep-learning algorithm to differentiate high-temperature histories.The damage characteristics in the microstructure of rocks subjected to different temperature treatments are successfully extracted.The results show that,compared to previously reported convolutional neural networks(CNN)training and classification methods,the proposed ResNet50 algorithm improves identification accuracy by over 10%,achieving up to 98%accuracy in classifying degraded sandstone treated at temperatures ranging from 25℃ to 1000℃.More importantly,through feature extraction of sandstone specimens after high-temperature deterioration,the ResNet50 algorithm demonstrates a superior ability to locate microscopic damage characteristics associated with different temperatures-an achievement rarely reported in previous research.For sandstone specimens exposed to 200℃-600℃,the extracted features primarily highlight the opening of primary pores and changes in rock particle morphology.In contrast,as the treated temperature exceeds 600℃,the extracted features predominantly reflect thermal damage fracture,whose area first diffuses and then concentrates,aligning closely with the thermal damage theory of rock.The findings of this study not only advance a deep learning-based approach for identifying rock deterioration after high-temperature exposure but also deepen the understanding of the relation between rock microstructural characteristics and high-temperature deterioration.
基金supported by the National Natural Science Foundation of China(Nos.52034009 and 52174093)the Fundamental Research Funds for the Central Universities(Nos.2024ZKPYNY01,2023ZKPYNY03,and 2023YQTD02).
文摘To reveal the deterioration mechanism of coal-rock assemblages under chemical corrosion and dynamic loading,chemical corrosion and dynamic impact experiments were conducted.Under different chemical corrosion conditions,the weakening characteristics,observable characteristics,softening characteristics of the dynamic parameters,dynamic failure characteristics,dynamic failure forms and dynamic microscopic characteristics were analyzed.Under each corrosion condition,the dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity tended to decrease with immersing time.The dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity exhibited an inverted U-shaped trend.Under dynamic impact,the failure process of acidly corroded samples can be divided into the following stages:the initial stage,elastic energy accumulation stage,local failure of coal and secondary rock crack expansion stage,coal fragment ejection stage,rock spalling stage and complete instability stage.Under dynamic impact,failure modes exist:coal crushing failure,rock fragmenting failure,rock splitting failure and full splitting failure.After impact failure,sample fragments are distributed in powder,granular,cone and block forms.Based on Zhu-Wang-Tang nonlinear viscoelastic properties,a model considering chemical corrosion and impact damage was proposed.The combined effects of chemical and impact-induced damage on the dynamic mechanical properties of coal-rock assemblages were systematically analyzed.
基金supported by the National Natural Science Foundation of China(51774196,52304093)China Postdoctoral Science Foundation(2023M741968)Shandong Provincial Natural Science Foundation(ZR2023ME086).
文摘Soft rock is one of the common geological conditions in coal mine underground water reservoir engineering.The cross-scale correlation analysis of water erosion soft lithology deterioration is very important for the safety and stability of coal mine underground reservoir(CMUR)engineering.To address the issues of grain crowding and segmentation difficulties in cross-scale corelation analysis,as well as the limitations of traditional etching methods,this study proposes an image grain segmentation method based on deep learning algorithms,utilizing scanning electron microscopy and image process-ing techniques.The method successfully segments crowded grains and eliminates the interference from misplaced particles.In addition,indoor uniaxial compression tests were conducted to obtain the mechanical properties of sandstone samples with different water content.By quantitatively characterizing the macroscopic and microscopic deterioration degree of red sandstone samples with different water contents,the relationship between the strength changes of rock samples and the pet-rographic parameters such as grain size and grain shape is analyzed,and the influence law of soft lithology deterioration in CMUR engineering is revealed.The results indicate:(1)Water significantly weakens the mechanical properties and stability of soft rock.With increasing water content,the strength of sandstone samples continuously decreases,and the failure mode transitions from brittle to ductile failure.(2)The deterioration of micro-micro structures is the main cause of the decrease in mechanical properties of water-eroded soft rock.Grain size,grain area,and aspect ratio are negatively correlated with water content,indicating that hydrophilic minerals in soft rock dissolve under the action of water,leading to rock damage.(3)Grain size,area,and aspect ratio can serve as significant indicators for quantifying the strength changes of water-eroded soft rock.The research findings can be applied to stability assessment and disaster prevention in CMUR engineering.
基金Project(2022YFB2602900)supported by the National Key Research and Development Program of ChinaProject(K2022T002)supported by the Scientific Research Plan of China Railway。
文摘As one of the major high-speed railway ballastless track structures in China,CRTSIII slab ballastless track has been laid for more than 6500 km.However,there are no detailed studies on its track irregularity deterioration throughout extended service periods,which may threaten the safety and stability of high-speed vehicles(HSV).In this study,a long-term tracking detection of CRTSIII slab ballastless track irregularities has been conducted,revealing its annual evolution law.An HSV-track coupled dynamics model was established to investigate the HSV dynamic responses under annual evolution of track irregularities.Considering the potential deterioration of track irregularities to extremely bad condition,the recommended classified limits for irregularity are proposed by analyzing the limit-exceeding probability of the safety and stability indexes of HSV.The results show that:taking 10 m wavelength as a demarcation,longer-wavelength irregularities exhibit larger amplitudes,faster evolution rates and a linear increasing trend,primarily affecting the stability of HSV.Conversely,shorter-wavelength irregularities exhibit smaller amplitudes and an insignificant evolution trend,predominantly affecting the safety of HSV.Furthermore,the periodic irregularity induced by the arching of 32 m simply-supported beam bridge should be paid closer attention to,as their evolution rate significantly surpasses that of irregularities at other wavelengths.
基金Projects(41502327,51474252)supported by the National Natural Science Foundation of ChinaProject(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of China+1 种基金Project(20130162120012)supported by the Special Research Fund for the Doctoral Program of Higher Education of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonance (NMR) technique was applied tothe measurement of sandstone specimens and analysis of the magnetic resonance imaging. Then, the fractal theory was employed tocompute the fractal dimension values of pore development of rocks after different freeze-thaw cycles. The results show that the massand porosity of rocks grow with the increase of freeze-thaw cycles. According to the NMR T2 distribution of sandstones, the poresizes of rock specimens increase after 180 freeze-thaw cycles, especially that of the medium-sized and small-sized pores. The spatialdistribution of sandstone pores after freeze-thaw cycles has fractal features within certain range, and the fractal dimension ofsandstones tends to increase gradually.
基金Supported by the National Science Fund for Young Scholars of China (31101598)the Natural Science Fund of Anhui Province, China (090411002)+2 种基金the Youth Science Fund of Anhui Province, China (10040606Y02)the Innovation Team of Corn of Anhui Science and Technology University (2011AKKC2011-1)the Key Disciplines of Anhui Science and Technology University (AKXK2010-1-1)~~
文摘[Objective] This study aimed to analyze the quantitative trait loci (QTLs) of grain storage durability for maize under controlled deterioration conditions by using SSR markers. [Method] The recombinant inbred line population F 2 derived from the cross of shen 137/02-50 was used to do the simple sequence repeats (SSRs) and QTL analysis. [Result] The 2 parents showed good polymorphisms. Three loci were detected on chromosome 1, chromosome 6 and chromosome 9, accounting for 41.2% of total phenotypic. [Conclusion] This study provided theoretical basis for using molecular marker to assist the breeding of storage durable maize varieties.
基金Supported by the National Natural Science Foundation of China(51006052)the Nanjing University of Science and Technology Outstanding Scholar Supporting Program~~
文摘A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration
文摘Evolutionary algorithm is applied as an optimization method in this paper. The increment of cumulative failure probability of fatigue, inspection cost, inspection interval and means are adopted as limiting condition, objective function and optimization variable respectively. According to fatigue characteristics of ship structure, the optimization research of inspecting fatigue deteriorating is carried out. The optimal inspection planning of minimal inspection cost is chosen. An example of computation and comparison of inspection plans is given. The results demonstrate that an optimal inspection plan considering security and economics can be chosen by the means in this paper.
文摘Seed deterioration is an irresistible physiological phenomenon. The aim to study seed deterioration is to see if seed deterioration can be retarded artificially and the higher seed vigor of fine varieties be maintained. The change of seed deterioration occurs in almost every system, and affects many kinds of enzyme and almost all organcllc, as a result, the seed loses its vigor. The reason of seed deterioration and the lost of seed vigor are mainly studied and discussed in this paper. According to the external and internal two kinds of theory advanced by E. H. Roberts, Much deep discussions are made from the view of biochemistry.
文摘The Sound and the Fury is William Faulkner's greatest work; four narrators tell the story of the deterioration of the Compson family from different perspective, exploring the cause of deterioration indirectly. The novel centers on Caddy's moral decay from different perspective. The thesis analyzes the processing fall of the Compson family through the analysis of three characters, Caddy, Quentin, and Jason. Caddy's deterioration is closely related to her loss of virginity, and her impending wedding causes Quentin to commit suicide who loves her deeply and possessively. However, Jason is heartless who he does not care his family. His tragedy lies in the decay of human nature. The thesis gives the general cause of the downfall of the family and readers will have a general concept of the family's deterioration.
文摘The English language has been deteriorating because of the modern e-mail and chat room language abbreviations,in corporation of different dialects depending on culture,and the inappropriate use of words as well as incorrect spelling.If we want to keep English language from deterioration,we should take advantage of the advances in technology and to learn about other cultures dialects,but we should keep the proper written and spoken English in mind.
基金support from the National Natural Science Foundation of China(No.51576027)。
文摘The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deterioration along the circumferential direction.The governing equations of mass,momentum and energy have been solved using the pressure-based segregated solver based on the finite volume method.The re-normalization group(RNG)k-εturbulence model with an enhanced wall treatment was selected.Considering the heat conduction in the solid wall,the mechanism of heat transfer deterioration and the buoyancy effect on deteriorated heat transfer were discussed.The evolution of secondary flow was analyzed.Effects of the outer-wall heat flux,mass flux,pressure and tube thermal conductivity on heat transfer were investigated.Moreover,the buoyancy criterion and the heat transfer correlation were obtained.Results indicate that the poor flow performance of near-wall fluid causes the pseudo-film boiling,further leads to the heat transfer deterioration.The strong buoyancy has an effect of enhancing the heat transfer at the bottom of tube,and weakening the heat transfer at the top of tube,which results in the non-uniform inner-wall temperature and heat flux distributions.Decreasing the ratio of outer-wall heat flux and mass flux,increasing the pressure could weaken the heat transfer difference along the circumferential direction,while the effect of thermal conductivity of tube on the circumferential parameters distributions is more complicated.When the buoyancy criterion of(Grq/Grth)max≤0.8 is satisfied,the effect of buoyancy could be ignored.The new correlations work well for non-uniform heat transfer predictions.
基金Project(2017YFC0805307) supported by the National Key Research and Development Program of ChinaProjects(51878078, 51927814, 51911530215) supported by the National Natural Science Foundation of China+4 种基金Project(2018-025) supported by the Training Program for High-level Technical Personnel in Transportation Industry, ChinaProject (2018JJ1026) supported by the Excellent Youth Foundation of Natural Science Foundation of Hunan Province, ChinaProject(17A008) supported by the Key Project of Education Department of Hunan Province, ChinaProjects(kfj150103, kfj170104) supported by the Open Research Fund of State Engineering Laboratory of Highway Maintenance Technology, Changsha University of Science & Technology, ChinaProject(CX20190644) supported by the Postgraduate Scientific Research Innovation Project of Hunan Province, China。
文摘To relieve the increasing traffic load, many early built highways need to be widened or reconstructed. The rapid performance detection to existing subgrades is important to their reasonable evaluation and maximized utilization. Based on five kinds of soils taken from an existing highway in southern China, three commonly detecting methods were used to determine their moisture contents, compaction degrees and resilient moduli. The results showed that the measured moisture contents were greater than the design value, and the compaction degrees decreased sharply compared to the original ones. The moisture and heat exchange produced a decrease in the resilient modulus of plate loading test(PLT) from the standard 60 MPa down to 40 MPa. Afterwards, the portable falling weight deflectometer(PFWD) and dynamic cone penetrometer(DCP) were used to evaluate the subgrade performances. The measured PFWD moduli and the DCP penetration rates were correlated with the resilient moduli of PLT, deflections of the Beckman beam test, compaction degrees and moisture contents. The correlation analysis indicates that both of two methods are suitable in rapid detecting subgrade performances, but PFWD method is more recommended for it has higher accuracy and efficiency.
基金Natural Science Foundation Project of Fujian Province,China(No.2013J01004)
文摘A stress-strength structural reliability model was proposed with a stochastic strength aging deterioration process. In structural engineering,the deterioration of structure's strength should be the total of the deterioration owing to continual wear, fatigue,corrosion,etc.,and the abrupt deterioration as a result of randomly variable loads. The deterioration of structure's strength should be influenced by both the internal deterioration owing to direct wear and the external deterioration due to randomly variable loads.Meanwhile,the load process was given as Poisson square wave process. The reliability was derived using stress-strength interference theory. In particular,the reliability was also given when random variables followed the normal distribution.
基金Projects(2010BAK67B16,2013BAK08B11,2014BAK16B02)supported by the National Science and Technology Support Program of China during the 12th Five-year Plan Period
文摘Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipitation on the deterioration process. In view of this, the remoulded soil specimens were mixed with three kinds of salts(i.e., NaCl, Na_2SO_4 and their mixture) with different salt concentrations, and the specimens were kept in environment cabinet for undergoing different wet-dry cycles. After each cycle, the ultrasound velocity measurements were employed to monitor the deterioration process. For the specimens that have suffered three wet-dry cycles, the mechanical properties(i.e. shear strength and compression strength) were determined to evaluate the degree of deterioration. Furthermore, considering the realistic conservation environment of earthen sites, mechanical stability of these specimens against sediment-carrying wind erosion was conducted in a wind tunnel. These experiments results indicate that the overall average velocities of the specimens after the third cycle are significantly lower than those subjected to only one cycle. Ultrasound velocity, mechanical strength and wind erosion rate decrease when salt content increases. However, the internal friction angle increases firstly, and then decreases with the increase in salt content added to the specimens. Na_2SO_4 contributes most of the surface deterioration, while NaCl plays little role in the deterioration. The damage potential of the salt mixture is less obvious and largely dependent on the crystallisation location.