期刊文献+
共找到283篇文章
< 1 2 15 >
每页显示 20 50 100
A Parametrical Comprehensive Review of Solar Assisted Humidification-Dehumidification Desalination Units
1
作者 Zahrah F.Hussein Abas Ramiar Karima E.Amori 《Frontiers in Heat and Mass Transfer》 2025年第3期765-817,共53页
The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development.Solar and waste heat-powered humidification dehumidification(HDH)desalination... The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development.Solar and waste heat-powered humidification dehumidification(HDH)desalination systems become essential due to the severe impacts of global warming and water shortages.This problem highlights the need to apply boosted water desalination solutions.Desalination is a capital-intensive process that demands considerable energy,predominantly sourced fromfossil fuels worldwide,posing a significant carbon footprint risk.HDH is a very efficient desalination method suitable for remote areas with moderate freshwater requirements for domestic and agricultural usage.Several operational and maintenance concerns are to blame.The flow and thermal balances of humidifiers and dehumidifiers under the right conditions are crucial for system efficiency.These systems comprise a humidifier and dehumidifier,energy foundations for space or process heating and electricity generation,fluid transfer or efficiency enhancement accessories,and measurement-control devices.All technologies that enhance the performance of HDH systems are elucidated in this work.These are utilizing efficient components,renewable energy,heat recovery via multi-effect and multi-stage processes,waste heat-powered,and accelerating humidification and dehumidification processes through pressure variation or employing heat pumps,in addition to exergy and economical analyses.According to the present work,the seawater HDH system is feasible for freshwater generation.Regarding economics and gain output ratio,humidification–dehumidification is a viable approach for decentralized small-scale freshwater production applications,but it needs significant refinement.Systemproductivity of fresh water is much higher with integrated solar water heating than with solar air heating.The HDH offers the lowest water yield cost per liter and ideal system productivity when paired with a heat pump.The suggested changes aim to enhance system and process efficiency,reducing electrical energy consumption and cost-effective,continuous,decentralized freshwater production.This thorough analysis establishes a foundation for future research on energy and exergy cycles based on humidification and dehumidification. 展开更多
关键词 desalination solar desalination HUMIDIFICATION-DEHUMIDIFICATION energy EXERGY performance solar power
在线阅读 下载PDF
Dynamic Regulation of Hydrogen Bonding Networks and Solvation Structures for Synergistic Solar‑Thermal Desalination of Seawater and Catalytic Degradation of Organic Pollutants
2
作者 Ming‑Yuan Yu Jing Wu +3 位作者 Guang Yin Fan‑Zhen Jiao Zhong‑Zhen Yu Jin Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期548-565,共18页
Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei... Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants. 展开更多
关键词 Solar steam generation Seawater desalination Catalytic degradation Bacterial cellulose Cobalt hydroxycarbonate nanorods
在线阅读 下载PDF
Desalination Brine Discharge in Morocco
3
作者 Zineb Chari Essediya Cherkaoui +1 位作者 Mohamed Khamar Abderrahman Nounah 《Journal of Environmental & Earth Sciences》 2025年第3期166-177,共12页
Seawater desalination has been considered an important solution for water scarcity in coastal areas.Morocco,with its 3,500 km long coastline,has seen significant growth in population and industrial activities in recen... Seawater desalination has been considered an important solution for water scarcity in coastal areas.Morocco,with its 3,500 km long coastline,has seen significant growth in population and industrial activities in recent years.The dams that supply water to most regions of Morocco have faced periods of drought.This led the government to start a large-scale seawater desalination project that shall produce over 2 MM m^(3)/year.The most common environmental impact associated with desalination plants is the high concentration brine discharge which can alter the physical,chemical,and biological properties of the receiving water body,In fact,the increasing number of desalination plants along the coastline amplifies the potential risks that brine discharges pose to marine ecosystems.This highlights the critical need for regulations to manage pollutant concentrations in water,both at the discharge point(Effluent Standards-ES)and in the receiving environment(Ambient Standards-AS).Law 36-15,in its Article 72,grants any natural or legal person,whether public or private,the right to carry out seawater desalination to meet their own water needs or those of other users,in accordance with current legislation and regulations.However,the definition of regulations concerning marine environmental aspects and the substantial limits for discharges has not yet been specified.Indeed,these regulations will need to be developed with due consideration for the local biodiversity.These regulations should also take into account the technical criteria required to determine the compliance point and define the boundaries of the brine discharge impact zone. 展开更多
关键词 DROUGHT desalination Environmental Impact Brine Discharge REGULATIONS Marine
在线阅读 下载PDF
Electrospun Membranes of Hydrophobic Polyimide and NH_(2)-UiO-66 Nanocomposite for Desalination
4
作者 Seungju Kim Jue Hou +1 位作者 Namita Roy Choudhury Sandra EKentish 《Energy & Environmental Materials》 2025年第2期264-272,共9页
Hydrophobic nanofiber composite membranes comprising polyimide and metal-organic frameworks are developed for desalination via direct contact membrane distillation(DCMD).Our study demonstrates the synthesis of hydroph... Hydrophobic nanofiber composite membranes comprising polyimide and metal-organic frameworks are developed for desalination via direct contact membrane distillation(DCMD).Our study demonstrates the synthesis of hydrophobic polyimides with trifluoromethyl groups,along with superhydrophobic UiO-66(hMOF)prepared by phenylsilane modification on the metal-oxo nodes.These components are then combined to create nanofiber membranes with improved hydro ph obi city,ensuring long-term stability while preserving a high water flux.Integration of hMOF into the polymer matrix further increases membrane hydrophobic properties and provides additional pathways for vapor transport during MD.The resulting nanofiber composite membranes containing 20 wt%of hMOFs(PI-1-hMOF-20)were able to desalinate hypersaline feed solution of up to 17 wt%NaCl solution,conditions that are beyond the capability of reverse osmosis systems.These membranes demonstrated a water flux of 68.1 kg m^(-2)h^(-1) with a rejection rate of 99.98%for a simulated seawater solution of 3.5 wt%NaCl at 70℃,while maintaining consistent desalination performance for 250 h. 展开更多
关键词 desalination ELECTROSPINNING membrane distillation metal organic frameworks POLYIMIDE
在线阅读 下载PDF
Next-Generation Desalination Membranes Empowered by Novel Materials:Where Are We Now?
5
作者 Siqi Wu Lu Elfa Peng +4 位作者 Zhe Yang Pulak Sarkar Mihail Barboiu Chuyang Y.Tang Anthony G.Fane 《Nano-Micro Letters》 2025年第4期308-331,共24页
Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity.However,state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materia... Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity.However,state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materials as a result of ongoing technological advancements.These novel materials possess intrinsic pore structures or can be assembled to form lamellar membrane channels for selective transport of water or solutes(e.g.,NaCl).Still,in real applications,the results fall below the theoretical predictions,and a few properties,including large-scale fabrication,mechanical strength,and chemical stability,also have an impact on the overall effectiveness of those materials.In view of this,we develop a new evaluation framework in the form of radar charts with five dimensions(i.e.,water permeance,water/NaCl selectivity,membrane cost,scale of development,and stability)to assess the advantages,disadvantages,and potential of state-of-the-art and newly developed desalination membranes.In this framework,the reported thin film nanocomposite membranes and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes.This review will demonstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes.In this review,we also point out the prospects and challenges of next-generation membranes for desalination applications.We believe that this comprehensive framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and development in the field of membrane technology,leading to new insights and advancements. 展开更多
关键词 Novel materials desalination membranes Reverse osmosis Evaluation framework Separation performance
在线阅读 下载PDF
Nature-Inspired Upward Hanging Evaporator with Photothermal 3D Spacer Fabric for Zero-Liquid-Discharge Desalination
6
作者 Ye Peng Yang Shao +3 位作者 Longqing Zheng Haoxuan Li Meifang Zhu Zhigang Chen 《Nano-Micro Letters》 2026年第1期545-561,共17页
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa... While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination. 展开更多
关键词 desalination Solar interfacial evaporation Biomimetic design Zero liquid discharge Thermal management
在线阅读 下载PDF
Corrosion resistance of modified carbon steel in thermal membrane coupling desalination system
7
作者 Li-yun Wu Zhong Zheng +3 位作者 Zhang-fu Yuan Liang Liao Yan-gang Zhang Lin-fei Zhao 《Journal of Iron and Steel Research International》 2025年第5期1413-1426,共14页
A hydrophobic composite coating was obtained on the carbon steel surface through electrochemical deposition of a copper coating in a sulfate solution and chemical vapor deposition of a carbon fiber film.It alleviated ... A hydrophobic composite coating was obtained on the carbon steel surface through electrochemical deposition of a copper coating in a sulfate solution and chemical vapor deposition of a carbon fiber film.It alleviated the serious corrosion problem of carbon steel on the evaporator of hot film coupled seawater desalination system in harsh marine environment.The morphologies and compositions of the coatings were analyzed,revealing the influence of electrodeposition time on their performance.The micro-nano copper structure formed by electrodeposition significantly improved the deposition effect of carbon layer.Additionally,experiments with seawater solution contact angle tests indicated that electrodeposition transformed the surface properties from hydrophilic to hydrophobic,effectively inhibiting the diffusion of corrosive medium into the interior of the substrate.Through polarization curves,electrochemical impedance spectroscopy,and other analyses,it was demonstrated that the hydrophobic coating significantly improves the corrosion resistance of carbon steel substrates in seawater environments,surpassing the performance of traditional duplex steel. 展开更多
关键词 Carbon steel Chemical vapor deposition Corrosion Thermal membrane coupling Seawater desalination
原文传递
Charged functional groups modified porous spherical hollow carbon material as CDI electrode for salty water desalination
8
作者 Yushan Ni Yunlong Pu +3 位作者 Jie Zhang Weiyan Cui Mingjun Gao Dongjiang You 《Journal of Environmental Sciences》 2025年第3期254-267,共14页
As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC... As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC)were synthesized as CDI electrode material for removing Na^(+)and Cl^(−)in salty water.Results showed that the average diameter of HC was approximately 180 nm,and the infrared spectrum showed that its surface was successfully modified with sulfonic and amino groups,respectively.The sulfonic acid functionalized HC(HC-S)showed better electrochemical and desalting performance than the amino-functionalized HC(HC–N),with a maximum Faradic capacity of 287.4 F/g and an adsorptive capacity of 112.97 mg/g for NaCl.Additionally,92.63%capacity retention after 100 adsorption/desorption cycles demonstrates the excellent stability of HC-S.The main findings prove that HC-S is viable as an electrodematerial for desalination by high-performance CDI applications. 展开更多
关键词 Hollow carbon Functional groups desalination Capacitive deionization
原文传递
Bioinspired oxygen-locking property electrocatalysts enable highly efficient electrochemical ozone production for sea sand desalination
9
作者 Zhaoyu Chen Ben Zhang +8 位作者 Shuyan Lu Guanfeng Xue Qianzhi Gou Jiacheng Wang Ruduan Yuan Juanxiu Xiao Li Li John Wang Meng Li 《Journal of Energy Chemistry》 2025年第8期929-938,共10页
Electrochemical ozone(O_(3))production(EOP)faces a critical challenge due to the competitive oxygen evolution reaction(OER),which severely limits ozone yields.Inspired by the oxygen-binding mechanism of heme,we design... Electrochemical ozone(O_(3))production(EOP)faces a critical challenge due to the competitive oxygen evolution reaction(OER),which severely limits ozone yields.Inspired by the oxygen-binding mechanism of heme,we designed a biomimetic catalyst,FePP@SnO_(2)@CA,by electrodepositing iron porphyrin(FePP)onto SnO_(2)@CA nanosheets,endowing it with an“oxygen-locking property”to suppress competing OER.This catalyst demonstrates exceptional EOP performance,achieving an ozone production rate of 8.9 mmol cm^(−2)h^(−1)and a Faraday efficiency(FE)of 20.46%±1.6%.DFT calculations confirm that Fe–O_(2)interactions stabilize O_(2)*intermediates,redirecting the reaction pathway from OER to ozone generation and reducing the O–O coupling energy barrier,thereby enabling thermodynamic selectivity control.In addition,when FePP@SnO_(2)@CA is used as a dual-functional material for sea sand desalination,the chlorine removal efficiency can reach 52.7%.This work provides a novel bioinspired strategy for EOP catalyst design and broadens the application potential of FePP@SnO_(2)@CA in sustainable technologies. 展开更多
关键词 EOP Oxygen-locking property Sea sand desalination DFT
在线阅读 下载PDF
Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination
10
作者 Limin Wang Feiyi Huang +9 位作者 Xinyi Liang Rajkumar Devasenathipathy Xiaotian Liu Qiulan Huang Zhongyun Yang Dujuan Huang Xinglan Peng Du-Hong Chen Youjun Fan Wei Chen 《Chinese Journal of Structural Chemistry》 2025年第2期25-33,共9页
Chemical functionalization of graphene is a topic of paramount importance to broaden its applications in chemistry,physics,and biological science but remains a great challenge due to its low chemical activity and poor... Chemical functionalization of graphene is a topic of paramount importance to broaden its applications in chemistry,physics,and biological science but remains a great challenge due to its low chemical activity and poor dispersion.Here,we report a strategy for the photosynergetic electrochemical functionalization of graphene(EFG).By using chloride ion(Cl^(-))as the intercalation anions and co-reactants,the electrogenerated radicals confined in the expanded graphite layers enable efficient radical addition reaction,thus grasping crystallineperfect EFG.We found that the ultraviolet irradiation and applied voltage have increased the surface/interface concentration of Cl,thus boosting the functionalization of graphene.Theoretical calculation and experimental results verified the oxygen evolution reaction(OER)on EFG has been improved by regulating the doping of chlorine atoms.In addition,the reduced interlayer distance and enhanced electrostatic repulsion near the basal plane endow the fabricated EFG-based membrane with high salt retention.This work highlights a method for the in situ functionalization of graphene and the subsequent applications in OER and water desalination. 展开更多
关键词 Synchronous functionalization of graphene PHOTOELECTROCHEMISTRY Confined spacing Radical addition reaction Water splitting and desalination
原文传递
Biomass-enhanced Janus sponge-like hydrogel with salt resistance and highstrength for efficient solar desalination 被引量:4
11
作者 Aqiang Chu Meng Yang +4 位作者 Juanli Chen Jinmin Zhao Jing Fang Zhensheng Yang Hao Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1698-1710,共13页
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ... Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications. 展开更多
关键词 Solar interfacial evaporation HYDROGEL Biomass desalination Salt resistance
在线阅读 下载PDF
Highly efficient three-dimensional solar evaporator for zero liquid discharge desalination of high-salinity brine 被引量:1
12
作者 Meichun Ding Demin Zhao +6 位作者 Panpan Feng Baolei Wang Zhenying Duan Rui Wei Yuxi Zhao Chen-Yang Liu Chenwei Li 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期52-65,共14页
Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report... Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report a simple and green strategy to fabricate a three-dimensional porous graphene spiral roll(3GSR)that enables highly efficient solar evaporation,salt collection,and water production from near-saturated brine with zero liquid discharge(ZLD).The 3GSR design facilitates energy recovery,radial brine transport,and directional salt crystallization,thereby resulting in an ultrahigh evaporation rate of 9.05 kg m^(-2) h^(-1) in 25 wt%brine under 1-sun illumina-tion for 48 h continuously.Remarkably,the directional salt crystallization on its outer surface not only enlarges the evaporation area but also achieves an ultrahigh salt collection rate of 2.92 kg m^(-2) h^(-1),thus enabling ZLD desalination.Additionally,3GSR exhibits a record-high water production rate of 3.14 kg m^(-2) h^(-1) in an outdoor test.This innovative solution offers a highly efficient and continuous solar desalination method for water production and ZLD brine treatment,which has great implications for addressing global water scarcity and environmental issues arising from brine disposal. 展开更多
关键词 graphene aerogels graphene composites solar desalination solar-driven interfacial evaporation
在线阅读 下载PDF
Performance Evaluation of an Evaporative Cooling Pad for Humidification-Dehumidification Desalination
13
作者 Ibtissam El Aouni Hicham Labrim +4 位作者 Elhoussaine Ouabida Ahmed Ait Errouhi Rachid El Bouayadi Driss Zejli Aouatif Saad 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2323-2335,共13页
The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective,efficient and environmentally friendly way.The desalination technique by humidification... The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective,efficient and environmentally friendly way.The desalination technique by humidificationdehumidification is non-conventional approach suitable for areas with low infrastructure(such as rural and decentralized regions)since it does not require permanent maintenance.In this study,this technology is implemented by using solar energy as a source of thermal power.A seawater desalination unit is considered,which consists of a chamber with two evaporators(humidifiers),a wetted porous material made of a corrugated cellulose cardboard and a condenser(dehumidifier).The evaporation system is tested with dry bulb temperature and relative air humidity data.The results of numerical simulations indicate that higher inlet air velocities(from 0.75 to 3 m/s)lead to a decrease in theΔT,ΔRH,and effectiveness.With the air remaining within the evaporator for 30 cm,the temperature differential increases to 5.7°C,accompanied by a 39%rise in relative humidity contrast.These changes result in a significant enhancement in humidification efficiency,achieving a remarkable efficiency level of 78%.However,a wettability value of 630 m^(2)/m^(3)leads to a smaller reduction of these parameters.Increasing the pad thickness,particularly to 0.3 m,improves performance by boostingΔT,ΔRH,and effectiveness,especially for pads with a wettability of 630 m^(2)/m^(3),for which superior performances are predicted by the numerical tests. 展开更多
关键词 desalination HUMIDIFICATION DEHUMIDIFICATION porous material solar energy EVAPORATOR
在线阅读 下载PDF
An efficient strategy for the preparation of MIL-53(Al)-NH_(2)membranes with high ion selectivity and desalination performance
14
作者 Wenmin Li Zheng Liu +4 位作者 Xingya Li Rongqiang Fu Zhaoming Liu Tingting Xu Tongwen Xu 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期41-47,I0010,共8页
The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divale... The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divalent calcium(Ca^(2+))and magnesium(Mg^(2+))ions are at the subnanometer scale in diameter,similar to target monovalent ions,making ion separation a great challenge.Here,we propose a simple and fast secondary growth method for the preparation of MIL-53(Al)-NH_(2)membranes on the surface of anodic aluminum oxide.Such membranes contain angstrom-scale(~7Å)channels for the entrance of small monovalent ions and water molecules,endowing the selectivities for monovalent cations over divalent cations and water over salt molecules.The resulting high-connectivity MIL-53(Al)-NH_(2)membranes exhibit excellent ion separation performance(a selectivity of 121.42 for Na^(+)/Ca^(2+)and 93.81 for Li^(+)/Mg^(2+))and desalination performance(a water/salt selectivity of up to 5196).This work highlights metal–organic framework membranes as potential candidates for realizing ion separation and desalination in liquid treatment. 展开更多
关键词 metal-organic framework MIL-53(Al)-NH_(2) MEMBRANE ion selectivity desalination
在线阅读 下载PDF
Numerical Study of the Efficiency of Multi-Layer Membrane Filtration in Desalination Processes
15
作者 Salma Moushi Jaouad Ait lahcen +5 位作者 Ahmed El Hana Yassine Ezaier Ahmed Hader Imane Bakassi Iliass Tarras Yahia Boughaleb 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2509-2521,共13页
Multi-layer membrane filtration is a widely used technology for separating and purifying different components ofa liquid mixture. This technique involves passing the liquid mixture through a series of membranes with d... Multi-layer membrane filtration is a widely used technology for separating and purifying different components ofa liquid mixture. This technique involves passing the liquid mixture through a series of membranes with decreasing pore sizes, which allows for the separation of different components according to their molecular size. Thisstudy investigates the filtration process of a fluid through a two-dimensional porous medium designed forseawater desalination. The focus is on understanding the impact of various parameters such as the coefficientof friction, velocity, and the number of layers on filtration efficiency. The results reveal that the number of layersplays a crucial role in desalination, with an increase in layers leading to enhanced filtration quality, following apower law relationship. The study explores the influence of the coefficient of friction on filtration performance,emphasizing its significant effect on the number of particles filtered over time. Additionally, the role of the initialvelocity in filtration efficiency is examined, showing distinct effects at both high and low velocities. Biofouling isidentified as a factor influencing filtration, with an initial increase in filtered particles followed by a decline due toparticle accumulation in pores. 展开更多
关键词 desalination process membranefiltration Langevin dynamic fluid velocity number of layers filtered particles
在线阅读 下载PDF
Seawater desalination of arid regions:comparing the policy of the Kingdom of Saudi Arabia and Indonesia
16
作者 Nur Khafifah Rusni Dwita Sutjiningsih +1 位作者 Hayati Sari Hasibuan Raldi Hendro Kostoer 《Chinese Journal of Population,Resources and Environment》 2024年第2期204-211,共8页
Problems with clean water in coastal areas alongside an increase in population and community economic activities have diversified community activities.Coastal settlements bordering the high seas are characterized as a... Problems with clean water in coastal areas alongside an increase in population and community economic activities have diversified community activities.Coastal settlements bordering the high seas are characterized as arid areas with a lack of clean water.Here,the use of the range groundwater supply against seawater intrusion means that the water consumed by the community tastes salty and brackish.The availability of abundant seawater,processed through desalination technology,can be used to meet the daily clean water needs of coastal communities.Sustainable development goal(SDG)6 Water and Sanitation is concerned with ensuring that everyone has access to clean water and sanitation.In this regard,desalination technology is considered viable to achieve the SDGs in the environmental sector.Some countries have focused on using desalination technology to achieve target 6.4 by 2030.This goal aims to improve the efficiency of water use to reduce the number of people experiencing clean water scarcity by ensuring a sustainable supply of fresh water.The objective of this study is to examine the application of seawater desalination technology for clean water in the Kingdom of Saudi Arabia(KSA)and Indonesia,and identify the implications of desalination policies in these countries.Comparative studies were conducted using secondary data and literature studies on transforming seawater into clean water with technology.KSA applies seawater desalination technology to meet water needs.However,in Indonesia,policymaking has not holistically examined the potential of using seawater desalination technology for clean water.Until now,unlike in the KSA,Indonesia has not addressed the importance of the use of desalination technology in state policy. 展开更多
关键词 Clean water desalination Coastal settlements Kingdom of Saudi Arabia Indonesia
在线阅读 下载PDF
Optimizing Sustainability:Exergoenvironmental Analysis of a Multi-Effect Distillation with Thermal Vapor Compression System for Seawater Desalination
17
作者 Zineb Fergani Zakaria Triki +5 位作者 Rabah Menasri Hichem Tahraoui Meriem Zamouche Mohammed Kebir Jie Zhang Abdeltif Amrane 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期455-473,共19页
Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal va... Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression(MED-TVC)system,a highly promising desalination technology.The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression.The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact,considering both energy and exergy aspects.The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process,providing a holistic understanding of its performance.By scrutinizing the distribution and sources of exergy destruction,the study identifies specific areas for enhancement in the system’s design and operation,thereby elevating its overall sustainability.Moreover,the exergoenvironmental analysis quantifies the environmental impact,offering vital insights into the sustainability of seawater desalination technologies.The results underscore the significance of every component in the MED-TVC system for its exergoenvironmental performance.Notably,the thermal vapor compressor emerges as pivotal due to its direct impact on energy efficiency,exergy losses,and the environmental footprint of the process.Consequently,optimizing this particular component becomes imperative for achieving a more sustainable and efficient desalination system. 展开更多
关键词 Exergoenvironmental analysis MED-TVC desalination environmental impact of freshwater multi-objective optimization
在线阅读 下载PDF
Development and interpretation of ISO 13205:2024,Marine technology-Seawater desalination-Vocabulary
18
作者 Xu Jianmei Wang Min +1 位作者 Xie Chungang Sun Jing 《China Standardization》 2024年第5期62-64,共3页
Vocabulary is the most basic subject of standardization.Despite that individual terms related to seawater desalination have been mentioned in some standards and technical documents of ISO,WHO,and ASTM,the inconsistent... Vocabulary is the most basic subject of standardization.Despite that individual terms related to seawater desalination have been mentioned in some standards and technical documents of ISO,WHO,and ASTM,the inconsistent expression might still induce ambiguity in communications among the participators in this area.Moreover,terms in these documents are not comprehensive.Consequently,ISO 13205:2024 is developed to eliminate the misunderstanding in both the academic and commercial communications.This paper expounds on the specific progress of the research in three aspects:background,drafting of ISO 13205:2024,and interpretation of ISO 13205:2024.The significance of the standard is also discussed. 展开更多
关键词 seawater desalination VOCABULARY ISO STANDARDS
原文传递
Effects of Desalination Processes on the Water Circulation and Earth System
19
作者 Jae-Woo Choi 《Journal of Environmental Protection》 2024年第3期338-342,共5页
Desalination is emerging as a promising alternative among various technologies to resolve water shortage. However, desalination requires a sufficient energy and cooling device and therefore poses limitations for its i... Desalination is emerging as a promising alternative among various technologies to resolve water shortage. However, desalination requires a sufficient energy and cooling device and therefore poses limitations for its installation and application. In particular, many countries suffering water deficits are economically underdeveloped and cannot afford the technology. As this technology, which changes seawater into freshwater, has little environmental impact, developed countries will need to assist less developed countries to introduce this technology as a humanitarian effort. This will help reduce the number of countries that have experienced difficulty with development. 展开更多
关键词 desalination Earth System Humanitarian Effort Water Shortage
在线阅读 下载PDF
Impacts of Climate Change on Seawater Temperature and Total Dissolved Solids: Challenges and Sustainable Solutions for Reverse Osmosis Desalination in the Arabian Gulf Region
20
作者 Ahmed Al Kubaish Jamal Salama 《Computational Water, Energy, and Environmental Engineering》 2024年第1期86-93,共8页
This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study hig... This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf. 展开更多
关键词 Climate Change TEMPERATURE Reverse Osmosis Seawater Total Dissolved Solids desalination
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部