Sleep is an indispensable part of life−its deficiency has significant implications for overall health and wellbeing[1].In today’s fast-paced society,sleep loss from either stressful or non-stressful origins has becom...Sleep is an indispensable part of life−its deficiency has significant implications for overall health and wellbeing[1].In today’s fast-paced society,sleep loss from either stressful or non-stressful origins has become prevalent.Specifically,active sleep deprivation(ASD),resulting from extended use of smartphones and other recreational activities,has risen as a global health issue.Clinical research has underscored a strong correlation between chronic pain and inadequate sleep[2].The relationship between pain and sleep is reciprocal:pain disturbs sleep,while poor sleep quality,in turn,reduces pain tolerance and exacerbates spontaneous pain sensations[3].While these interplays are well-documented in cases of passive sleep deprivation(PSD)associated with external pressures or illnesses,understanding how and which regions of the brain collaborate to recalibrate the intricate neural circuitry governing pain perception during ASD remains a crucial yet unresolved frontier.展开更多
Ong et al.investigated the impact of area deprivation index(ADI),a measure of neighborhood-level socioeconomic deprivation,on baseline severity of rhegmatogenous retinal detachments(RRDs),as measured by visual acuity ...Ong et al.investigated the impact of area deprivation index(ADI),a measure of neighborhood-level socioeconomic deprivation,on baseline severity of rhegmatogenous retinal detachments(RRDs),as measured by visual acuity and foveal involvement at the time of presentation to ophthalmologic care(1).Their key finding was that a presenting visual acuity worse than 20/40 and/or foveal involving RRD were associated with a high ADI,suggesting that higher ADI(meaning greater socioeconomic disadvantage)contributes to the delay in presentation to care.It is well understood that the delayed care for RRDs leads to worse ultimate visual outcomes and surgical success rates(2-4).Further,their findings contribute to the existing body of literature that suggests socioeconomic deprivation contributes overall to poor health.展开更多
BACKGROUND Vitamin D deficiency has been associated with prostate cancer,particularly in ethnic minorities.Patients with prostate cancer may still be deficient even in areas of high sun exposure.Although androgen depr...BACKGROUND Vitamin D deficiency has been associated with prostate cancer,particularly in ethnic minorities.Patients with prostate cancer may still be deficient even in areas of high sun exposure.Although androgen deprivation therapy(ADT)is well documented to affect bone health,its impact on vitamin D levels is still uncertain.This study investigates the subgroups of prostate cancer patients most associated with vitamin D deficiency and ADT’s relation to this.AIM To examine how prevalent vitamin D deficiency is among prostate cancer patients in a sun-rich environment,with focus on differences by race and disease stage.It also assessed whether ADT is associated with changes in vitamin D levels.METHODS Prostate cancer patients treated at Chao Family Comprehensive Cancer Center between 2014-2024 were retrospectively studied with regards to vitamin D levels across racial groups,disease stages,and ADT exposure.Changes in vitamin D levels pre-and post-ADT over 24 months were assessed by statistical methods including paired t-tests.RESULTS Among 120 patients(mean age:74 years,mean body mass index:27.6 kg/m^(2)),African American(33.3%)and Hispanic(31.8%)patients had the greatest prevalence of vitamin D deficiency(<20 ng/mL).With a 28.6%deficit rate,metastatic castration-resistant prostate cancer had the highest prevalence rates of deficiency.There was no significant difference between pre-and post-ADT vitamin D levels(P=0.45).CONCLUSION Vitamin D deficiency is common in prostate cancer patients,especially racial minorities and those with advanced disease,despite residing in an area with high sun exposure.ADT does not significantly impact vitamin D levels in the short term.Routine screening and supplementation should be considered in these high-risk groups.展开更多
Prostate cancer is the most common non-cutaneous cancers occurring in American men,and whilemost men with early-stage prostate cancers are cured,up to a third might manifest with biochemical recurrence(BCR)of prostate...Prostate cancer is the most common non-cutaneous cancers occurring in American men,and whilemost men with early-stage prostate cancers are cured,up to a third might manifest with biochemical recurrence(BCR)of prostate cancer.BCR is a disease entitywhich is characterized by a rising prostate-specific antigen(PSA)in the setting of a previously treated localized prostate cancerwith either surgery or radiation therapywith curativeintent.展开更多
Deprivation of glucose and lactate provides an effective pathway to terminate the nutrients supplement for tumor growth.In this work,biomimetic nanozymes called m@BGLC are constructed for catalytic tumor inhibition th...Deprivation of glucose and lactate provides an effective pathway to terminate the nutrients supplement for tumor growth.In this work,biomimetic nanozymes called m@BGLC are constructed for catalytic tumor inhibition through nutrients deprivation and oxidative damage induction.Concretely,the catalytic enzymes of glucose oxidase(GOx),lactate oxidase(LOx)and chloroperoxidase(CPO)are precrosslinked with bovine serum albumin(BSA)to construct nanozymes,which are then biomimetic functionalized with cancer cell membrane to prepare m@BGLC.Benefiting from the biomimetic camouflage with homologous cell membrane,m@BGLC inherit homotypic binding and immune escape abilities,facilitating the tumor targeting accumulation and preferable cell internalization for improved drug delivery efficiency.Subsequently,under the cascade catalysis of nanozymes,m@BGLC consume glucose and lactate for tumor starvation therapy through nutrients deprivation,and meanwhile,the resulting hyprochloric acid(HClO)causes an oxidative damage of cells to synergistically inhibit tumor growth.In vitro and in vivo findings demonstrate a robust tumor eradication effect of m@BGLC without obvious adverse reactions via the targeted combination therapy.Such cascade catalytic nanomedicine may inspire the development of sophisticated strategies for tumor combination therapy under unfavorable tumor microenvironments.展开更多
Background:Intermediate-risk prostate cancer(IR-PC)represents a heterogeneous group requiring nuanced treatment approaches,and recent advancements in radiotherapy(RT),androgen deprivation therapy(ADT),and prostatespec...Background:Intermediate-risk prostate cancer(IR-PC)represents a heterogeneous group requiring nuanced treatment approaches,and recent advancements in radiotherapy(RT),androgen deprivation therapy(ADT),and prostatespecific membrane antigen positron emission tomography(PSMA-PET/CT)imaging have prompted growing interest in personalized,risk-adapted management strategies.This study by the Turkish Society for Radiation Oncology aims to examine radiation oncologists’practices in managing IR-PC,focusing on RT and imaging modalities to identify trends for personalized treatments.Methods:A cross-sectional survey was conducted among Turkish radiation oncologists treating at least 50 prostate cancer(PC)cases annually.The 22-item questionnaire covered IR-PC management aspects such as risk stratification,imaging preferences,androgen deprivation therapy(ADT)use and duration,RT techniques,and treatment combinations.Anonymous responses were analyzed using descriptive statistics.Results:Thirty radiation oncologists participated,57%with over 20 years of experience.The median annual number of PC cases treated was 130.For risk stratification,43% followed the National Comprehensive Cancer Network(NCCN)guidelines,while 30%used the D’Amico classification.Imaging preferences revealed 47% favored PSMA-PET/CT.External beam RT was universally preferred,with 60% adopting ultra-hypofractionation.ADT was used by 97%,with 73% recommending it for unfavorable IR-PC cases.Short-term ADT(4–6 months)was the standard,administered concurrently with RT by 57%.Cardiovascular status influenced decisions for 97% of respondents,while 37% also considered patient age,preferences,and sexual health.Conclusions:This national survey demonstrates a shift toward personalized care in intermediate-risk prostate cancer in Turkey,marked by selective PSMA-PET/CT use,tailored ADT,and evolving radiotherapy practices.The findings underscore the importance of multidisciplinary collaboration—particularly between urologists and radiation oncologists—to optimize imaging integration and treatment outcomes.展开更多
Intermittent androgen deprivation therapy(IADT)is now being increasingly opted by the treating physicians and patients with prostate cancer.The most common reason driving this is the availability of an off-treatment p...Intermittent androgen deprivation therapy(IADT)is now being increasingly opted by the treating physicians and patients with prostate cancer.The most common reason driving this is the availability of an off-treatment period to the patients that provides some relief from treatment-related side-effects,and reduced treatment costs.IADT may also delay the progression to castration-resistant prostate cancer.However,the use of IADT in the setting of prostate cancer has not been strongly substantiated by data from clinical trials.Multiple factors seem to contribute towards this inadequacy of supportive data for the use of IADT in patients with prostate cancer,e.g.,population characteristics(both demographic and clinical),study design,treatment regimen,on-and off-treatment criteria,duration of active treatment,endpoints,and analysis.The present review article focuses on seven clinical trials that evaluated the efficacy of IADT vs.continuous androgen deprivation therapy for the treatment of prostate cancer.The results from these clinical trials have been discussed in light of the factors that may impact the treatment outcomes,especially the disease(tumor)burden.Based on evidence,potential candidate population for IADT has been suggested along with recommendations for the use of IADT in patients with prostate cancer.展开更多
Objective To observe the effect of application of garlic paste at Shenque (神阙 CV8) on the circadian rhythm in sleep deprivation young students. Metheds Twenty healthy volunteer young male students from Southern Me...Objective To observe the effect of application of garlic paste at Shenque (神阙 CV8) on the circadian rhythm in sleep deprivation young students. Metheds Twenty healthy volunteer young male students from Southern Medical University were randomly divided into three groups: normal group (A), sleep deprivation group (B) and treatment group (C). Volunteers in group B and C received 48 h sleep deprivation (SD), and in the mean time volunteers in group C were treated by garlic paste at Shenque (神阙 CV8), while those in group A had no any treatment. The body temperature of all the volunteers was detected at 6:00 am, 12:00 am, 6:00 pm and 0:00 am, respectively, after the treatment. Results The mean body temperature values in group A and C both were highest at 6: 00 pm and lowest at 6: 00 am which had a significant difference in each group (P〈0.01); in group B, the mean body temperature was highest at 0:00 am and lowestat 6:00 am, no significant difference was found between them (P〉0.05). Results of cosine analysis showed that in subjects of group B the circadian rhythm of body temperature still kept going well after SD, but the peak amplitude and amplitude of vibration were higher than those of group A, and the acrophase of group B was obviously lower than that of group C and A. The 3 indexes of group C were similar to those of group A, denoting that garlic paste application of Shenque (神阙 CV8) could prevent disorders of circadian rhythm of the body temperature. Conclusion The garlic paste application at Shenque (神阙 CV8) can adjust circadian rhythm and accelerate the recovery processes of circadian rhythm in SD young students.展开更多
AIM:To establish an animal model of form deprivation amblyopia based on a simulated cataract intraocular lens(IOLs).METHODS:Poly(dimethyl siloxane)-SiO_(2)thin films(PSF)with different degrees of opacity as IOL materi...AIM:To establish an animal model of form deprivation amblyopia based on a simulated cataract intraocular lens(IOLs).METHODS:Poly(dimethyl siloxane)-SiO_(2)thin films(PSF)with different degrees of opacity as IOL materials were prepared.The light transmission of the PSF-IOL was measured,and its in vitro biosafety was determined by cell counting kit(CCK)-8 assay using the HLEC-B3 cell line and ARPE-19 cell line.Subsequently,the in vivo safety was determined by implanting the PSF-IOL with 10%wt SiO_(2)into the right eyes of New Zealand white rabbits(PSF-IOL group),and compared with two control groups:contralateral comparison group and normal control(NC)group(Contralateral comparison group:the fellow eye;NC group:a group of binocular normal rabbits without intervention).The flash visual-evoked potentials(F-VEPs)were measured to verify amblyopia.RESULTS:PSFs containing 0,2%,and 10%wt SiO_(2)were successfully constructed.The 0 SiO_(2)PSF was transparent,while the 10%wt SiO_(2)PSF was completely opaque.It was found that PSF did not induce unwanted cytotoxicity in HLECs and ARPE19 cells in vitro.In vitro,PSF-IOL with 10%wt SiO_(2)was also non-toxic,and no significant inflammation or structural changes occurred after four weeks of PSF-IOL implantation.Finally,our IOL-simulated congenital cataract rabbit detected by F-VEPs suggested tentative amblyopia.CONCLUSION:A PSF-IOL that mimics cataracts is created.A novel form deprivation model is created by the IOL-simulated congenital cataract rabbit.It can be developed fast and stable and holds great potential for future study.展开更多
Oxygen/glucose deprivation (OGD) has been widely used as an in vitro model of focal ischemia, where the blood flow is severely reduced and neurons rapidly die. However, adjacent to the focal region is ‘penumbra', ...Oxygen/glucose deprivation (OGD) has been widely used as an in vitro model of focal ischemia, where the blood flow is severely reduced and neurons rapidly die. However, adjacent to the focal region is ‘penumbra', where residual blood flow remains oxygen and glucose supplies are at low levels. To model this pathological genesis, we developed a partial OGD (pOGD) protocol in a rat brain slice. This model met two requirements: oxygen was partially deprived and glucose was reduced in the perfusion buffer. Therefore we investigated the effect of pOGD on gama-aminobutyric acid (GABAA) receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 neurons of a hippocampal slice through whole-cell patch-clamp technique. We found that the amplitude and decay time of IPSCs were increased immediately during pOGD treatment. And the enhancement of IPSCs amplitude resulted from an increase of the synaptic conductance without a significant change in the reversal potential of chloride. These results suggested that the nervous system could increase inhibitory neurotransmission to offset excitation by homeostasis mechanisms during the partial oxygen and glucose attack.展开更多
Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotect...Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotective mechanism of Shuxuetong injection remains poorly understood. Here, cerebral microvascular endothelial cells(bEnd.3) were incubated in glucose-free Dulbecco's modified Eagle's medium containing 95% N_2/5% CO_2 for 6 hours, followed by high-glucose medium containing 95% O_2 and 5% CO_2 for 18 hours to establish an oxygen-glucose deprivation/reperfusion model. This in vitro cell model was administered Shuxuetong injection at 1/32, 1/64, and 1/128 concentrations(diluted 32-, 64-, and 128-times). Cell Counting Kit-8 assay was used to evaluate cell viability. A fluorescence method was used to measure lactate dehydrogenase, and a fluorescence microplate reader used to detect intracellular reactive oxygen species. A fluorescent probe was also used to measure mitochondrial superoxide production. A cell resistance meter was used to measure transepithelial resistance and examine integrity of monolayer cells. The fluorescein isothiocyanate-dextran test was performed to examine blood-brain barrier permeability. Real-time reverse transcription polymerase chain reaction was performed to analyze mRNA expression levels of tumor necrosis factor alpha, interleukin-1β, interleukin-6, and inducible nitric oxide synthase. Western blot assay was performed to analyze expression of caspase-3, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, occludin, vascular endothelial growth factor, cleaved caspase-3, B-cell lymphoma 2, phosphorylated extracellular signal-regulated protein kinase, extracellular signal-regulated protein kinase, nuclear factor-κB p65, I kappa B alpha, phosphorylated I kappa B alpha, I kappa B kinase, phosphorylated I kappa B kinase, claudin-5, and zonula occludens-1. Our results show that Shuxuetong injection increases bEnd.3 cell viability and B-cell lymphoma 2 expression, reduces cleaved caspase-3 expression, inhibits production of reactive oxygen species and mitochondrial superoxide, suppresses expression of tumor necrosis factor alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase mRNA, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, markedly increases transepithelial resistance, decreases blood-brain barrier permeability, upregulates claudin-5, occludin, and zonula occludens-1 expression, reduces nuclear factor-κB p65 and vascular endothelial growth factor expression, and reduces I kappa B alpha, extracellular signal-regulated protein kinase 1/2, and I kappa B kinase phosphorylation levels. Overall, these findings suggest that Shuxuetong injection has protective effects on brain microvascular endothelial cells after oxygen-glucose deprivation/reperfusion. Moreover, its protective effect is associated with reduction of mitochondrial superoxide production, inhibition of the inflammatory response, and inhibition of vascular endothelial growth factor, extracellular signal-regulated protein kinase 1/2, and the nuclear factor-κB p65 signaling pathway.展开更多
OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxy...OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxygen-glucose deprivation/reoxygenation(OGD/R) 2 h/24 h in PC12 cells.N-acetyl-lcysteine(NAC),a classical anti-oxidant,was used as positive control.Pharmacodynamic experimental study groups as follows:control,control+ICS Ⅱ50 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ 12.5 μmol·L^(-1),OGD/R + ICS Ⅱ 25 μmol·L^(-1),OGD/R + ICS Ⅱ50 μmol·L^(-1),and OGD/R+NAC 100 μmol·L^(-1) groups.Cell viability and lactate dehydrogenase(LDH) leakage rate were measured by MTT assay and LDH ELISA kit,respectively.Moreover,reactive oxygen species(ROS) ELISA kit was used for detection of intracellular ROS generation,Mito-SOX fluorescence staining was used for detecting production of ROS in mitochondria and mitochondrial membrane potential(MMP)was detected by rhodamine 123 dye.In addition,PC12 cells apoptosis was detected by one-step TUNEL assay.Furthermore,the expressions of nuclear factor erythroid 2-related factors(Nrf2),Keap1,HO^(-1),NQO^(-1),silent information regulator 3(SIRT3),IDH2,Bax,Bcl-2 and caspase 3 were detected by Western blotting analysis.RESULTS The results of MTT and LDH assay showed that OGD/R reduced the cell viability and improved LDH release compared with the control or ICSⅡ 50 μmol·L^(-1) alone(P<0.01).Meanwhile,OGD/R not only increased intracellular and mitochondrial ROS generation,but also elevated the fluorescence intensity of TUNEL staining,at the same time,the MMP was declined when challenged by OGD/R.Furthermore,the Western blotting results showed that OGD/R induced the increase in the expression of cytoplasm-Nrf2,Keap1,Bax and cleaved-caspase 3 level,while the decrease in the expression of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).However,ICS Ⅱ significantly increased the viability of PC12 cells and reduced LDH leakage(P<0.01).Notably,ICS Ⅱ also suppressed ROS generation both in the intracellular and mitochondria,as well as restored MMP.It was also worthy to note that ICS Ⅱ decreased the expressions of cytoplasmNrf2,Keap1,Bax and the level of cleaved-caspase3,whereas,it increased the expressions of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).CONCLUSION ICSⅡ reduced OGD/Rinduced oxidative damage in PC12 cells under the laboratory conditions,and its underlying mechanism may be related to the regulation of Nrf2/SIRT3 signaling pathway.展开更多
Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin an...Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit(NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 μg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression of neurotrophic factors. Therefore, HDCA may have therapeutic potential in the clinical management of ischemic stroke. This study was approved by the Ethics Committee of Experimental Animals of Beijing University of Chinese Medicine(approval No. BUCM-3-2016040201-2003) in April 2016.展开更多
Objective:To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat,and visual development plastic stage and visual plasticity in adult rats.Methods:A ...Objective:To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat,and visual development plastic stage and visual plasticity in adult rats.Methods:A total of 60 SD rats ages 13 d were randomly divided into A,B,C three groups with 20 in each group,group A was set as the normal control group without any processing,group B was strabismus amblyopic group,using the unilateral extraocular rectus resection to establish the strabismus amblyopia model,group C was monocular form deprivation amblyopia group using unilateral eyelid edge resection+lid suture.At visual developmental early phase(P2S),meta phase(P3S),late phase(P45)and adult phase(P120),the lateral geniculate body and visual cortex area 17 of five rats in each group were exacted for C-fos Immunocytochemistry.Neuron morphological changes in lateral geniculate body and visual cortex was observed,the positive neurons differences of C-fos expression induced by light stimulation was measured in each group,and the condition of radiation development of P120 amblyopic adult rats was observed.Results:In groups B and C,C-fos positive cells were significantly lower than the control group at P25(P<0.05),there was no statistical difference of C-fos protein positive cells between group B and group A(P>0.05),C-fos protein positive cells level of group B was significantly lower than that of group A(P<0.05).The binoculus C-fos protein positive cells level of groups B and C were significantly higher than that of control group at P35,P4S and P120 with statistically significant differences(P<0.05).Conclusions:The increasing of C-fos expression in geniculate body and visual cortex neurons of adult amblyopia suggests the visual cortex neurons exist a certain degree of visual plasticity.展开更多
Chronic loss of sleep damages health and disturbs the quality of life.Long-lasting sleep deprivation(SD)as well as sleep abnormalities are substantial risk factors for major depressive disorder,although the underlying...Chronic loss of sleep damages health and disturbs the quality of life.Long-lasting sleep deprivation(SD)as well as sleep abnormalities are substantial risk factors for major depressive disorder,although the underlying mechanisms are not clear.Here,we showed that chronic SD in mice promotes a gradual elevation of extracellular ATP,which activates astroglial P2X7 receptors(P2X7Rs).Activated P2X7Rs,in turn,selectively down-regulated the expression of 5-HT2B receptors(5-HT2BRs)in astrocytes.Stimulation of P2X7Rs induced by SD selectively suppressed the phosphorylation of AKT and FoxO3 a in astrocytes,but not in neurons.The overexpression of FoxO3a in astrocytes inhibited the expression of 5-HT2BRs.Down-regulation of 5-HT2BsRs instigated by SD suppressed the activation of STAT3 and relieved the inhibition of Ca2+-dependent phospholipase A2.This latter cascade promoted the release of arachidonic acid and prostaglandin E2.The depression-like behaviors induced by SD were alleviated in P2X7R-KO mice.Our study reveals the mechanism underlying chronic SD-induced depression-like behaviors and suggests 5-HT2BRs as a key target for exploring therapeutic strategies aimed at the depression evoked by sleep disorders.展开更多
Prostate cancer (PCa) is the most common visceral malignancy in men with androgen deprivation therapy (ADT) the preferred therapy to suppress testosterone production and hence tumor growth. Despite its effectivene...Prostate cancer (PCa) is the most common visceral malignancy in men with androgen deprivation therapy (ADT) the preferred therapy to suppress testosterone production and hence tumor growth. Despite its effectiveness in lowering testosterone, ADT is associated with side effects including loss of muscle mass, diminished muscle strength, decrements in physical performance, earlier fatigue and declining quality of life. This review reports a survey of the literature with a focus on changes in muscle strength, physical function and body composition, due to short-term and long-term ADT. Studies in these areas are sparse, especially well-controlled, prospective randomized trials. Cross-sectional and longitudinal data (up to 2 years) for men with PCa treated with ADT as well as patients with PCa not receiving ADT and age-matched healthy men are presented when available. Based on limited longitudinal data, the adverse effects of ADT on muscle function, physical performance and body composition occur shortly after the onset of ADT and tend to persist and worsen over time. Exercise training is a safe and effective intervention for mitigating these changes and initial guidelines for exercise program design for men with PCa have been published by the American College of Sports Medicine. Disparities in study duration, types of studies and other patient-specific variables such as time since diagnosis, cancer stage and comorbidities may all affect an understanding of the influence of ADT on health, physical performance and mortality.展开更多
Maternal sleep deprivation(MSD)is a global public health problem that affects the physical and mental development of pregnant women and their newborns.The latest research suggests that sleep deprivation(SD)disrupts th...Maternal sleep deprivation(MSD)is a global public health problem that affects the physical and mental development of pregnant women and their newborns.The latest research suggests that sleep deprivation(SD)disrupts the gut microbiota,leading to neuroinflammation and psychological disturbances.However,it is unclear whether MSD affects the establishment of gut microbiota and neuroinflammation in the newborns.In the present study,MSD was performed on pregnant SpragueDawley rats in the third trimester of pregnancy(gestational days 15-21),after which intestinal contents and brain tissues were collected from offspring at different postnatal days(P1,P7,P14,and P56).Based on microbial profiling,microbial diversity and richness increased in pregnant rats subjected to MSD,as reflected by the significant increase in the phylum Firmicutes.In addition,microbial dysbiosis marked by abundant Firmicutes bacteria was observed in the MSD offspring.Furthermore,quantitative real-time polymerase chain reaction(q RT-PCR)and enzyme-linked immunosorbent assay(ELISA)showed that the expression levels of proinflammatory cytokines interleukin 1β(IL-1β)and tumor necrosis factorα(TNF-α)were significantly higher in the MSD offspring at adulthood(P56)than in the control group.Through Spearman correlation analysis,IL-1βand TNF-αwere also shown to be positively correlated with Ruminococcus_1 and Ruminococcaceae_UCG-005 at P56,which may determine the microbiota-host interactions in MSDrelated neuroinflammation.Collectively,these results indicate that MSD changes maternal gut microbiota and affects the establishment of neonatal gut microbiota,leading to neuroinflammation in MSD offspring.Therefore,understanding the role of gut microbiota during physiological development may provide potential interventions for cognitive dysfunction in MSD-impacted offspring.展开更多
AIM: To investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS: Rats for sleep disruption were placed...AIM: To investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS: Rats for sleep disruption were placed inside a computerized rotating drum, gastric mucosa was taken from rats with 1, 3 and 7d sleep deprivation. RT-PCR, immunohistochemistry and Western blotting were used to determine the expression of heat shock protein 70. Ethanol (500mL.L(-1), i.g.) was used to induce gastric mucosa damage. RESULTS: RT-PCR, Western blotting and immunostaining confirmed that the sleep deprivation as a stress resulted in significantly greater expression of inducible heat shock protein 70 in gastric mucosa of rats. After the 500mL.L(-1) ethanol challenge, the ulcer area found in the rats with 7d sleep deprivation (19.15 +/- 4.2)mm(2) was significantly lower (P【0.01) than the corresponding control (53.7 +/- 8.1) mm(2). CONCLUSION: Sleep deprivation as a stress, in addition to lowering the gastric mucosal barrier, is able to stimulate the expression of inducible heat shock protein 70 in gastric mucosa of rats, the heat shock protein 70 may play an important role in gastric mucosal protection.展开更多
Recent studies have shown that induced expression of endogenous antioxidative enzymes thr- ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may be a neur...Recent studies have shown that induced expression of endogenous antioxidative enzymes thr- ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may be a neuroprotective strategy. In this study, rat cerebral cortical neurons cultured in vitro were pretreated with 10 ktM curcumin or post-treated with 5 pM curcumin, respectively before or after being subjected to oxygen-glucose deprivation and reoxygenation for 24 hours. Both pretreatment and post-treatment resulted in a significant decrease of cell injury as indicated by propidium iodide/Hoechst 33258 staining, a prominent increase of Nrf2 protein expression as indicated by western blot analysis, and a remarkable increase of protein expression and enzyme activity in whole cell lysates of thioredoxin before ischemia, after ischemia, and after reoxygenation. In addition, post-treatment with curcumin inhibited early DNA/RNA oxidation as indicated by immunocytochemistry and increased nuclear Nrf2 protein by inducing nuclear accumulation of Nrf2. These findings suggest that curcumin activates the expression of thi- oredoxin, an antioxidant protein in the Nrf2 pathway, and protects neurons from death caused by oxygen-glucose deprivation in an in vitro model of ischemia/reperfusion. We speculate that pharmacologic stimulation of antioxidant gene expression may be a promising approach to neu- roprotection after cerebral ischemia.展开更多
Transient receptor potential melastatin 2(TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression...Transient receptor potential melastatin 2(TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma(PC12) cells injured by oxygen-glucose deprivation(OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2(CXCL2), NACHT, LRR, and PYD domain–containing protein 3(NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation.展开更多
基金supported by the National Natural Science Foundation of China(U21A20418).
文摘Sleep is an indispensable part of life−its deficiency has significant implications for overall health and wellbeing[1].In today’s fast-paced society,sleep loss from either stressful or non-stressful origins has become prevalent.Specifically,active sleep deprivation(ASD),resulting from extended use of smartphones and other recreational activities,has risen as a global health issue.Clinical research has underscored a strong correlation between chronic pain and inadequate sleep[2].The relationship between pain and sleep is reciprocal:pain disturbs sleep,while poor sleep quality,in turn,reduces pain tolerance and exacerbates spontaneous pain sensations[3].While these interplays are well-documented in cases of passive sleep deprivation(PSD)associated with external pressures or illnesses,understanding how and which regions of the brain collaborate to recalibrate the intricate neural circuitry governing pain perception during ASD remains a crucial yet unresolved frontier.
文摘Ong et al.investigated the impact of area deprivation index(ADI),a measure of neighborhood-level socioeconomic deprivation,on baseline severity of rhegmatogenous retinal detachments(RRDs),as measured by visual acuity and foveal involvement at the time of presentation to ophthalmologic care(1).Their key finding was that a presenting visual acuity worse than 20/40 and/or foveal involving RRD were associated with a high ADI,suggesting that higher ADI(meaning greater socioeconomic disadvantage)contributes to the delay in presentation to care.It is well understood that the delayed care for RRDs leads to worse ultimate visual outcomes and surgical success rates(2-4).Further,their findings contribute to the existing body of literature that suggests socioeconomic deprivation contributes overall to poor health.
文摘BACKGROUND Vitamin D deficiency has been associated with prostate cancer,particularly in ethnic minorities.Patients with prostate cancer may still be deficient even in areas of high sun exposure.Although androgen deprivation therapy(ADT)is well documented to affect bone health,its impact on vitamin D levels is still uncertain.This study investigates the subgroups of prostate cancer patients most associated with vitamin D deficiency and ADT’s relation to this.AIM To examine how prevalent vitamin D deficiency is among prostate cancer patients in a sun-rich environment,with focus on differences by race and disease stage.It also assessed whether ADT is associated with changes in vitamin D levels.METHODS Prostate cancer patients treated at Chao Family Comprehensive Cancer Center between 2014-2024 were retrospectively studied with regards to vitamin D levels across racial groups,disease stages,and ADT exposure.Changes in vitamin D levels pre-and post-ADT over 24 months were assessed by statistical methods including paired t-tests.RESULTS Among 120 patients(mean age:74 years,mean body mass index:27.6 kg/m^(2)),African American(33.3%)and Hispanic(31.8%)patients had the greatest prevalence of vitamin D deficiency(<20 ng/mL).With a 28.6%deficit rate,metastatic castration-resistant prostate cancer had the highest prevalence rates of deficiency.There was no significant difference between pre-and post-ADT vitamin D levels(P=0.45).CONCLUSION Vitamin D deficiency is common in prostate cancer patients,especially racial minorities and those with advanced disease,despite residing in an area with high sun exposure.ADT does not significantly impact vitamin D levels in the short term.Routine screening and supplementation should be considered in these high-risk groups.
文摘Prostate cancer is the most common non-cutaneous cancers occurring in American men,and whilemost men with early-stage prostate cancers are cured,up to a third might manifest with biochemical recurrence(BCR)of prostate cancer.BCR is a disease entitywhich is characterized by a rising prostate-specific antigen(PSA)in the setting of a previously treated localized prostate cancerwith either surgery or radiation therapywith curativeintent.
基金financial support of Guangdong Basic and Applied Basic Research Foundation(No.2022B1515020095)National Natural Science Foundation of China(No.52073140)。
文摘Deprivation of glucose and lactate provides an effective pathway to terminate the nutrients supplement for tumor growth.In this work,biomimetic nanozymes called m@BGLC are constructed for catalytic tumor inhibition through nutrients deprivation and oxidative damage induction.Concretely,the catalytic enzymes of glucose oxidase(GOx),lactate oxidase(LOx)and chloroperoxidase(CPO)are precrosslinked with bovine serum albumin(BSA)to construct nanozymes,which are then biomimetic functionalized with cancer cell membrane to prepare m@BGLC.Benefiting from the biomimetic camouflage with homologous cell membrane,m@BGLC inherit homotypic binding and immune escape abilities,facilitating the tumor targeting accumulation and preferable cell internalization for improved drug delivery efficiency.Subsequently,under the cascade catalysis of nanozymes,m@BGLC consume glucose and lactate for tumor starvation therapy through nutrients deprivation,and meanwhile,the resulting hyprochloric acid(HClO)causes an oxidative damage of cells to synergistically inhibit tumor growth.In vitro and in vivo findings demonstrate a robust tumor eradication effect of m@BGLC without obvious adverse reactions via the targeted combination therapy.Such cascade catalytic nanomedicine may inspire the development of sophisticated strategies for tumor combination therapy under unfavorable tumor microenvironments.
文摘Background:Intermediate-risk prostate cancer(IR-PC)represents a heterogeneous group requiring nuanced treatment approaches,and recent advancements in radiotherapy(RT),androgen deprivation therapy(ADT),and prostatespecific membrane antigen positron emission tomography(PSMA-PET/CT)imaging have prompted growing interest in personalized,risk-adapted management strategies.This study by the Turkish Society for Radiation Oncology aims to examine radiation oncologists’practices in managing IR-PC,focusing on RT and imaging modalities to identify trends for personalized treatments.Methods:A cross-sectional survey was conducted among Turkish radiation oncologists treating at least 50 prostate cancer(PC)cases annually.The 22-item questionnaire covered IR-PC management aspects such as risk stratification,imaging preferences,androgen deprivation therapy(ADT)use and duration,RT techniques,and treatment combinations.Anonymous responses were analyzed using descriptive statistics.Results:Thirty radiation oncologists participated,57%with over 20 years of experience.The median annual number of PC cases treated was 130.For risk stratification,43% followed the National Comprehensive Cancer Network(NCCN)guidelines,while 30%used the D’Amico classification.Imaging preferences revealed 47% favored PSMA-PET/CT.External beam RT was universally preferred,with 60% adopting ultra-hypofractionation.ADT was used by 97%,with 73% recommending it for unfavorable IR-PC cases.Short-term ADT(4–6 months)was the standard,administered concurrently with RT by 57%.Cardiovascular status influenced decisions for 97% of respondents,while 37% also considered patient age,preferences,and sexual health.Conclusions:This national survey demonstrates a shift toward personalized care in intermediate-risk prostate cancer in Turkey,marked by selective PSMA-PET/CT use,tailored ADT,and evolving radiotherapy practices.The findings underscore the importance of multidisciplinary collaboration—particularly between urologists and radiation oncologists—to optimize imaging integration and treatment outcomes.
基金Ferring Pharmaceuticals provided funding for editorial assistance.The author acknowledges Dr.Payal Bhardwaj of Tata Consultancy Services,who provided editorial assistance.
文摘Intermittent androgen deprivation therapy(IADT)is now being increasingly opted by the treating physicians and patients with prostate cancer.The most common reason driving this is the availability of an off-treatment period to the patients that provides some relief from treatment-related side-effects,and reduced treatment costs.IADT may also delay the progression to castration-resistant prostate cancer.However,the use of IADT in the setting of prostate cancer has not been strongly substantiated by data from clinical trials.Multiple factors seem to contribute towards this inadequacy of supportive data for the use of IADT in patients with prostate cancer,e.g.,population characteristics(both demographic and clinical),study design,treatment regimen,on-and off-treatment criteria,duration of active treatment,endpoints,and analysis.The present review article focuses on seven clinical trials that evaluated the efficacy of IADT vs.continuous androgen deprivation therapy for the treatment of prostate cancer.The results from these clinical trials have been discussed in light of the factors that may impact the treatment outcomes,especially the disease(tumor)burden.Based on evidence,potential candidate population for IADT has been suggested along with recommendations for the use of IADT in patients with prostate cancer.
文摘Objective To observe the effect of application of garlic paste at Shenque (神阙 CV8) on the circadian rhythm in sleep deprivation young students. Metheds Twenty healthy volunteer young male students from Southern Medical University were randomly divided into three groups: normal group (A), sleep deprivation group (B) and treatment group (C). Volunteers in group B and C received 48 h sleep deprivation (SD), and in the mean time volunteers in group C were treated by garlic paste at Shenque (神阙 CV8), while those in group A had no any treatment. The body temperature of all the volunteers was detected at 6:00 am, 12:00 am, 6:00 pm and 0:00 am, respectively, after the treatment. Results The mean body temperature values in group A and C both were highest at 6: 00 pm and lowest at 6: 00 am which had a significant difference in each group (P〈0.01); in group B, the mean body temperature was highest at 0:00 am and lowestat 6:00 am, no significant difference was found between them (P〉0.05). Results of cosine analysis showed that in subjects of group B the circadian rhythm of body temperature still kept going well after SD, but the peak amplitude and amplitude of vibration were higher than those of group A, and the acrophase of group B was obviously lower than that of group C and A. The 3 indexes of group C were similar to those of group A, denoting that garlic paste application of Shenque (神阙 CV8) could prevent disorders of circadian rhythm of the body temperature. Conclusion The garlic paste application at Shenque (神阙 CV8) can adjust circadian rhythm and accelerate the recovery processes of circadian rhythm in SD young students.
基金Supported by National Natural Science Foundation of China(No.81870680).
文摘AIM:To establish an animal model of form deprivation amblyopia based on a simulated cataract intraocular lens(IOLs).METHODS:Poly(dimethyl siloxane)-SiO_(2)thin films(PSF)with different degrees of opacity as IOL materials were prepared.The light transmission of the PSF-IOL was measured,and its in vitro biosafety was determined by cell counting kit(CCK)-8 assay using the HLEC-B3 cell line and ARPE-19 cell line.Subsequently,the in vivo safety was determined by implanting the PSF-IOL with 10%wt SiO_(2)into the right eyes of New Zealand white rabbits(PSF-IOL group),and compared with two control groups:contralateral comparison group and normal control(NC)group(Contralateral comparison group:the fellow eye;NC group:a group of binocular normal rabbits without intervention).The flash visual-evoked potentials(F-VEPs)were measured to verify amblyopia.RESULTS:PSFs containing 0,2%,and 10%wt SiO_(2)were successfully constructed.The 0 SiO_(2)PSF was transparent,while the 10%wt SiO_(2)PSF was completely opaque.It was found that PSF did not induce unwanted cytotoxicity in HLECs and ARPE19 cells in vitro.In vitro,PSF-IOL with 10%wt SiO_(2)was also non-toxic,and no significant inflammation or structural changes occurred after four weeks of PSF-IOL implantation.Finally,our IOL-simulated congenital cataract rabbit detected by F-VEPs suggested tentative amblyopia.CONCLUSION:A PSF-IOL that mimics cataracts is created.A novel form deprivation model is created by the IOL-simulated congenital cataract rabbit.It can be developed fast and stable and holds great potential for future study.
文摘Oxygen/glucose deprivation (OGD) has been widely used as an in vitro model of focal ischemia, where the blood flow is severely reduced and neurons rapidly die. However, adjacent to the focal region is ‘penumbra', where residual blood flow remains oxygen and glucose supplies are at low levels. To model this pathological genesis, we developed a partial OGD (pOGD) protocol in a rat brain slice. This model met two requirements: oxygen was partially deprived and glucose was reduced in the perfusion buffer. Therefore we investigated the effect of pOGD on gama-aminobutyric acid (GABAA) receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 neurons of a hippocampal slice through whole-cell patch-clamp technique. We found that the amplitude and decay time of IPSCs were increased immediately during pOGD treatment. And the enhancement of IPSCs amplitude resulted from an increase of the synaptic conductance without a significant change in the reversal potential of chloride. These results suggested that the nervous system could increase inhibitory neurotransmission to offset excitation by homeostasis mechanisms during the partial oxygen and glucose attack.
基金supported in part by the National Natural Science Foundation of China,No.81573644(to LMH),81573733(to SWX)the Tianjin 131 Innovative Team Project,China(to HW)+5 种基金the National Major Science and Technology Project of China,No.2012ZX09101201-004(to SWX)the Science and Technology Plan Project of Tianjin of China,No.16PTSYJC00120(to LMH)the Applied Foundation and Frontier Technology Research Program of Tianjin of China(General Project),No.14JCYBJC28900(to SXW)the National International Science and Technology Cooperation Project of China,No.2015DFA30430(to HW)the Key Program of the Natural Science Foundation of Tianjin of China,No.16ICZDJC36300(to HW)the Scientific Research and Technology Development Plan Project of Guangxi Zhuang Autonomous Region of China,No.14125008-2-5(to SXW)
文摘Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotective mechanism of Shuxuetong injection remains poorly understood. Here, cerebral microvascular endothelial cells(bEnd.3) were incubated in glucose-free Dulbecco's modified Eagle's medium containing 95% N_2/5% CO_2 for 6 hours, followed by high-glucose medium containing 95% O_2 and 5% CO_2 for 18 hours to establish an oxygen-glucose deprivation/reperfusion model. This in vitro cell model was administered Shuxuetong injection at 1/32, 1/64, and 1/128 concentrations(diluted 32-, 64-, and 128-times). Cell Counting Kit-8 assay was used to evaluate cell viability. A fluorescence method was used to measure lactate dehydrogenase, and a fluorescence microplate reader used to detect intracellular reactive oxygen species. A fluorescent probe was also used to measure mitochondrial superoxide production. A cell resistance meter was used to measure transepithelial resistance and examine integrity of monolayer cells. The fluorescein isothiocyanate-dextran test was performed to examine blood-brain barrier permeability. Real-time reverse transcription polymerase chain reaction was performed to analyze mRNA expression levels of tumor necrosis factor alpha, interleukin-1β, interleukin-6, and inducible nitric oxide synthase. Western blot assay was performed to analyze expression of caspase-3, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, occludin, vascular endothelial growth factor, cleaved caspase-3, B-cell lymphoma 2, phosphorylated extracellular signal-regulated protein kinase, extracellular signal-regulated protein kinase, nuclear factor-κB p65, I kappa B alpha, phosphorylated I kappa B alpha, I kappa B kinase, phosphorylated I kappa B kinase, claudin-5, and zonula occludens-1. Our results show that Shuxuetong injection increases bEnd.3 cell viability and B-cell lymphoma 2 expression, reduces cleaved caspase-3 expression, inhibits production of reactive oxygen species and mitochondrial superoxide, suppresses expression of tumor necrosis factor alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase mRNA, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, markedly increases transepithelial resistance, decreases blood-brain barrier permeability, upregulates claudin-5, occludin, and zonula occludens-1 expression, reduces nuclear factor-κB p65 and vascular endothelial growth factor expression, and reduces I kappa B alpha, extracellular signal-regulated protein kinase 1/2, and I kappa B kinase phosphorylation levels. Overall, these findings suggest that Shuxuetong injection has protective effects on brain microvascular endothelial cells after oxygen-glucose deprivation/reperfusion. Moreover, its protective effect is associated with reduction of mitochondrial superoxide production, inhibition of the inflammatory response, and inhibition of vascular endothelial growth factor, extracellular signal-regulated protein kinase 1/2, and the nuclear factor-κB p65 signaling pathway.
基金National Natural Science Foundation of China(81560666)Program for Excellent Young Talents of Zunyi Medical Uiverstity(15zy-002)+1 种基金Science and Technology Innovation Talent Team of Guizhou Province(20154023)the ″Hundred″Level of High-level Innovative Talents in Guizhou Province(QKHRCPT 20165684);and Program forChangjiang Scholars and Innovative ResearchTeam in University of China(IRT一17R113).
文摘OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxygen-glucose deprivation/reoxygenation(OGD/R) 2 h/24 h in PC12 cells.N-acetyl-lcysteine(NAC),a classical anti-oxidant,was used as positive control.Pharmacodynamic experimental study groups as follows:control,control+ICS Ⅱ50 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ 12.5 μmol·L^(-1),OGD/R + ICS Ⅱ 25 μmol·L^(-1),OGD/R + ICS Ⅱ50 μmol·L^(-1),and OGD/R+NAC 100 μmol·L^(-1) groups.Cell viability and lactate dehydrogenase(LDH) leakage rate were measured by MTT assay and LDH ELISA kit,respectively.Moreover,reactive oxygen species(ROS) ELISA kit was used for detection of intracellular ROS generation,Mito-SOX fluorescence staining was used for detecting production of ROS in mitochondria and mitochondrial membrane potential(MMP)was detected by rhodamine 123 dye.In addition,PC12 cells apoptosis was detected by one-step TUNEL assay.Furthermore,the expressions of nuclear factor erythroid 2-related factors(Nrf2),Keap1,HO^(-1),NQO^(-1),silent information regulator 3(SIRT3),IDH2,Bax,Bcl-2 and caspase 3 were detected by Western blotting analysis.RESULTS The results of MTT and LDH assay showed that OGD/R reduced the cell viability and improved LDH release compared with the control or ICSⅡ 50 μmol·L^(-1) alone(P<0.01).Meanwhile,OGD/R not only increased intracellular and mitochondrial ROS generation,but also elevated the fluorescence intensity of TUNEL staining,at the same time,the MMP was declined when challenged by OGD/R.Furthermore,the Western blotting results showed that OGD/R induced the increase in the expression of cytoplasm-Nrf2,Keap1,Bax and cleaved-caspase 3 level,while the decrease in the expression of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).However,ICS Ⅱ significantly increased the viability of PC12 cells and reduced LDH leakage(P<0.01).Notably,ICS Ⅱ also suppressed ROS generation both in the intracellular and mitochondria,as well as restored MMP.It was also worthy to note that ICS Ⅱ decreased the expressions of cytoplasmNrf2,Keap1,Bax and the level of cleaved-caspase3,whereas,it increased the expressions of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).CONCLUSION ICSⅡ reduced OGD/Rinduced oxidative damage in PC12 cells under the laboratory conditions,and its underlying mechanism may be related to the regulation of Nrf2/SIRT3 signaling pathway.
基金supported by the National Natural Science Foundation of China,No.81430102(to QGW)
文摘Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit(NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 μg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression of neurotrophic factors. Therefore, HDCA may have therapeutic potential in the clinical management of ischemic stroke. This study was approved by the Ethics Committee of Experimental Animals of Beijing University of Chinese Medicine(approval No. BUCM-3-2016040201-2003) in April 2016.
文摘Objective:To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat,and visual development plastic stage and visual plasticity in adult rats.Methods:A total of 60 SD rats ages 13 d were randomly divided into A,B,C three groups with 20 in each group,group A was set as the normal control group without any processing,group B was strabismus amblyopic group,using the unilateral extraocular rectus resection to establish the strabismus amblyopia model,group C was monocular form deprivation amblyopia group using unilateral eyelid edge resection+lid suture.At visual developmental early phase(P2S),meta phase(P3S),late phase(P45)and adult phase(P120),the lateral geniculate body and visual cortex area 17 of five rats in each group were exacted for C-fos Immunocytochemistry.Neuron morphological changes in lateral geniculate body and visual cortex was observed,the positive neurons differences of C-fos expression induced by light stimulation was measured in each group,and the condition of radiation development of P120 amblyopic adult rats was observed.Results:In groups B and C,C-fos positive cells were significantly lower than the control group at P25(P<0.05),there was no statistical difference of C-fos protein positive cells between group B and group A(P>0.05),C-fos protein positive cells level of group B was significantly lower than that of group A(P<0.05).The binoculus C-fos protein positive cells level of groups B and C were significantly higher than that of control group at P35,P4S and P120 with statistically significant differences(P<0.05).Conclusions:The increasing of C-fos expression in geniculate body and visual cortex neurons of adult amblyopia suggests the visual cortex neurons exist a certain degree of visual plasticity.
基金the National Natural Science Foundation of China(81871852,81200935,81671862,and 81871529)Liaoning Revitalization Talents Program(XLYC1807137)+1 种基金the Scientific Research Foundation for Overseas Scholars of the Education Ministry of China(20151098)the Natural Science Foundation of Liaoning Province,China(20170541030)。
文摘Chronic loss of sleep damages health and disturbs the quality of life.Long-lasting sleep deprivation(SD)as well as sleep abnormalities are substantial risk factors for major depressive disorder,although the underlying mechanisms are not clear.Here,we showed that chronic SD in mice promotes a gradual elevation of extracellular ATP,which activates astroglial P2X7 receptors(P2X7Rs).Activated P2X7Rs,in turn,selectively down-regulated the expression of 5-HT2B receptors(5-HT2BRs)in astrocytes.Stimulation of P2X7Rs induced by SD selectively suppressed the phosphorylation of AKT and FoxO3 a in astrocytes,but not in neurons.The overexpression of FoxO3a in astrocytes inhibited the expression of 5-HT2BRs.Down-regulation of 5-HT2BsRs instigated by SD suppressed the activation of STAT3 and relieved the inhibition of Ca2+-dependent phospholipase A2.This latter cascade promoted the release of arachidonic acid and prostaglandin E2.The depression-like behaviors induced by SD were alleviated in P2X7R-KO mice.Our study reveals the mechanism underlying chronic SD-induced depression-like behaviors and suggests 5-HT2BRs as a key target for exploring therapeutic strategies aimed at the depression evoked by sleep disorders.
文摘Prostate cancer (PCa) is the most common visceral malignancy in men with androgen deprivation therapy (ADT) the preferred therapy to suppress testosterone production and hence tumor growth. Despite its effectiveness in lowering testosterone, ADT is associated with side effects including loss of muscle mass, diminished muscle strength, decrements in physical performance, earlier fatigue and declining quality of life. This review reports a survey of the literature with a focus on changes in muscle strength, physical function and body composition, due to short-term and long-term ADT. Studies in these areas are sparse, especially well-controlled, prospective randomized trials. Cross-sectional and longitudinal data (up to 2 years) for men with PCa treated with ADT as well as patients with PCa not receiving ADT and age-matched healthy men are presented when available. Based on limited longitudinal data, the adverse effects of ADT on muscle function, physical performance and body composition occur shortly after the onset of ADT and tend to persist and worsen over time. Exercise training is a safe and effective intervention for mitigating these changes and initial guidelines for exercise program design for men with PCa have been published by the American College of Sports Medicine. Disparities in study duration, types of studies and other patient-specific variables such as time since diagnosis, cancer stage and comorbidities may all affect an understanding of the influence of ADT on health, physical performance and mortality.
基金supported by the National Natural Science Foundation of China(82071395,91749116)Natural Science Foundation of Chongqing(cstc2021ycjh-bgzxm0186,cstc2020jcyjzdxm X0004)+1 种基金Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K201900403)Innovation Research Group at Institutions of Higher Education in Chongqing(CXQTP19034)。
文摘Maternal sleep deprivation(MSD)is a global public health problem that affects the physical and mental development of pregnant women and their newborns.The latest research suggests that sleep deprivation(SD)disrupts the gut microbiota,leading to neuroinflammation and psychological disturbances.However,it is unclear whether MSD affects the establishment of gut microbiota and neuroinflammation in the newborns.In the present study,MSD was performed on pregnant SpragueDawley rats in the third trimester of pregnancy(gestational days 15-21),after which intestinal contents and brain tissues were collected from offspring at different postnatal days(P1,P7,P14,and P56).Based on microbial profiling,microbial diversity and richness increased in pregnant rats subjected to MSD,as reflected by the significant increase in the phylum Firmicutes.In addition,microbial dysbiosis marked by abundant Firmicutes bacteria was observed in the MSD offspring.Furthermore,quantitative real-time polymerase chain reaction(q RT-PCR)and enzyme-linked immunosorbent assay(ELISA)showed that the expression levels of proinflammatory cytokines interleukin 1β(IL-1β)and tumor necrosis factorα(TNF-α)were significantly higher in the MSD offspring at adulthood(P56)than in the control group.Through Spearman correlation analysis,IL-1βand TNF-αwere also shown to be positively correlated with Ruminococcus_1 and Ruminococcaceae_UCG-005 at P56,which may determine the microbiota-host interactions in MSDrelated neuroinflammation.Collectively,these results indicate that MSD changes maternal gut microbiota and affects the establishment of neonatal gut microbiota,leading to neuroinflammation in MSD offspring.Therefore,understanding the role of gut microbiota during physiological development may provide potential interventions for cognitive dysfunction in MSD-impacted offspring.
文摘AIM: To investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS: Rats for sleep disruption were placed inside a computerized rotating drum, gastric mucosa was taken from rats with 1, 3 and 7d sleep deprivation. RT-PCR, immunohistochemistry and Western blotting were used to determine the expression of heat shock protein 70. Ethanol (500mL.L(-1), i.g.) was used to induce gastric mucosa damage. RESULTS: RT-PCR, Western blotting and immunostaining confirmed that the sleep deprivation as a stress resulted in significantly greater expression of inducible heat shock protein 70 in gastric mucosa of rats. After the 500mL.L(-1) ethanol challenge, the ulcer area found in the rats with 7d sleep deprivation (19.15 +/- 4.2)mm(2) was significantly lower (P【0.01) than the corresponding control (53.7 +/- 8.1) mm(2). CONCLUSION: Sleep deprivation as a stress, in addition to lowering the gastric mucosal barrier, is able to stimulate the expression of inducible heat shock protein 70 in gastric mucosa of rats, the heat shock protein 70 may play an important role in gastric mucosal protection.
基金supported by grants from the National Natural Science Foundation of China,No.81171090Natural Science Foundation of Chongqing Education Committee of China,No.KJ110313+1 种基金Foundation of Key State Laboratory of Neurobiology of Fudan University in China,No.10-08Foundation of Key Laboratory of Ministry of Education of the Third Medical Military University in China
文摘Recent studies have shown that induced expression of endogenous antioxidative enzymes thr- ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may be a neuroprotective strategy. In this study, rat cerebral cortical neurons cultured in vitro were pretreated with 10 ktM curcumin or post-treated with 5 pM curcumin, respectively before or after being subjected to oxygen-glucose deprivation and reoxygenation for 24 hours. Both pretreatment and post-treatment resulted in a significant decrease of cell injury as indicated by propidium iodide/Hoechst 33258 staining, a prominent increase of Nrf2 protein expression as indicated by western blot analysis, and a remarkable increase of protein expression and enzyme activity in whole cell lysates of thioredoxin before ischemia, after ischemia, and after reoxygenation. In addition, post-treatment with curcumin inhibited early DNA/RNA oxidation as indicated by immunocytochemistry and increased nuclear Nrf2 protein by inducing nuclear accumulation of Nrf2. These findings suggest that curcumin activates the expression of thi- oredoxin, an antioxidant protein in the Nrf2 pathway, and protects neurons from death caused by oxygen-glucose deprivation in an in vitro model of ischemia/reperfusion. We speculate that pharmacologic stimulation of antioxidant gene expression may be a promising approach to neu- roprotection after cerebral ischemia.
基金supported by the National Natural Science Foundation of China,Nos.81671532,81771625(to XF)the Jiangsu Provincial Key Medical Discipline of China,No.ZDXKA2016013(to XF)+3 种基金the Jiangsu Provincial Medical Youth Talent of China,No.QNRC2016758(to XF)the Jiangsu Province Women and Children Health Research Project of China,No.F201750(to XF)the Public Health Technology Project of Suzhou City of China,No.SYS201765(to XF)a grant from the Department of Pediatrics Clinical Center of Suzhou City of China,No.Szzx201504(to XF)。
文摘Transient receptor potential melastatin 2(TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma(PC12) cells injured by oxygen-glucose deprivation(OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2(CXCL2), NACHT, LRR, and PYD domain–containing protein 3(NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation.