The valorization of biomass to produce biofuels has become a heavily investigated field due to the depletion of fossil fuels and environmental concerns.Among them,the research on deoxygenation of fatty acids or esters...The valorization of biomass to produce biofuels has become a heavily investigated field due to the depletion of fossil fuels and environmental concerns.Among them,the research on deoxygenation of fatty acids or esters derived from biomass as well as municipal sludge organics to produce diesel-like hydrocarbons has become a hot topic.Fatty acid is a key intermediate derived from ester hydrolysis,therefore has attracted more attention as a model compound.In this review,we first introduce and compare the three reaction pathways of hydrodeoxygenation,decarboxylation and decarbonylation,for the deoxygenation of fatty acids and esters.The preference of reaction pathway is closely related to the type of raw materials and catalysts as well as reaction conditions.The special purpose of this review is to summarize the dilemma and possible strategies for deoxygenation of fatty acids,which is expected to provide guidance for future exploration and concentrates.The atom utilization along with stability during reaction in a long time is the most important index for commercial economy.Herein,we propose that the rational design and delicate synthesis of stable single-atom non-noble catalysts may be the best solution.The ultimately goal is aiming to develop sustainable production of green diesel hydrocarbons.展开更多
The selective catalytic deoxygenation of oxy-organics in Fischer-Tropsch mixed oil for its high value utilization is challenging.Herein,a BaCO_(3)/γ-Al_(2)O_(3) catalyst was prepared calciningγ-Al_(2)O_(3) with BaCO...The selective catalytic deoxygenation of oxy-organics in Fischer-Tropsch mixed oil for its high value utilization is challenging.Herein,a BaCO_(3)/γ-Al_(2)O_(3) catalyst was prepared calciningγ-Al_(2)O_(3) with BaCO_(3),and the acid-alkalinity of the catalyst was regulated by introducing alkaline Ba basic sties.In a co ntinuous fixed-bed reactor with a feed mass space velocity of 1 h~(-1)and reaction temperature of 330℃,BaCO_(3)/γ-Al_(2)O_(3) catalyst can efficiently catalyzed the deoxygenation removal of 1-octanol in Fischer-Tropsch C10mixture oil.It also inhibited the isomerization of 1-decene in the C10 mixture.The catalytic deoxygenation kinetics of 1-octanol were also studied.The reaction was endothermic with an activation energy of 64 kJ·mol^(-1)and a reaction order of 2.In addition,theoretical studies revealed the adsorption and activation of 1-decene on the Lewis acidic site and the alkaline Ba basic sites,1-decene was more easily underwent isomerization into 2-decene at Lewis acid sites.This research provides a useful method to enable the industrial application of catalytic deoxygenation of alcohols in Fischer-Tropsch synthetic oil.展开更多
The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-range...The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-ranged hydrocarbons,bio-jet fuels,or fatty alcohols with controllable selectivity is especially attractive in natural oil feedstock biorefineries.This review presents recent progress in catalytic deoxygenation of natural oils or related model compounds(e.g.,fatty acids)to renewable liquid fuels(green diesel and bio-jet fuels)and valuable fatty alcohols(unsaturated and saturated fatty alcohols).Besides,it discusses and compares the existing and potential strategies to control the product selectivity over heterogeneous catalysts.Most research conducted and reviewed has only addressed the production of one category;therefore,a new integrative vision exploring how to direct the process toward fuel and/or chemicals is urgently needed.Thus,work conducted to date addressing the development of new catalysts and studying the influence of the reaction parameters(e.g.,temperature,time and hydrogen pressure)is summarized and critically discussed from a green and sustainable perspective using efficiency indicators(e.g.,yields,selectivity,turnover frequencies and catalysts lifetime).Special attention has been given to the chemical transformations occurring to identify key descriptors to tune the selectivity toward target products by manipulating the reaction conditions and the structures of the catalysts.Finally,the challenges and future research goals to develop novel and holistic natural oil biorefineries are proposed.As a result,this critical review provides the readership with appropriate information to selectively control the transformation of natural oils into either biofuels and/or value-added chemicals.This new flexible vision can help pave the wave to suit the present and future market needs.展开更多
The low-temperature coal tar contains a considerable number of oxygen-containing compounds,which results in poor quality.The catalytic hydrodeoxygenation of oxygen-containing compound to an added-value chemical compou...The low-temperature coal tar contains a considerable number of oxygen-containing compounds,which results in poor quality.The catalytic hydrodeoxygenation of oxygen-containing compound to an added-value chemical compound is one of the most efficient methods to upgrade coal tar.In this study,density functional theory calculations are employed to assess and analyze in detail the hydrodeoxygenation of dibenzofuran,as a model compound of coal tar,on the Ni(111)surface.The obtained results indicate that dibenzofuran can be firstly hydrogenated to tetra hy d rod i be nzofura n and hexahydfodibenzofufan.The five-membered-ring opening reaction of tetrahydrodibenzofuran is more straightforward than that of hexahydrodibenzofuran(Ea=0.71 eV vs.1.66 eV).Then,both pathways generate an intermediate 2-cyclohexylphenoxy compound.One part of 2-cyclohexylphenoxy is hydrogenated to 2-cyclohexylphenol and consecutively hydrogenated to cyclohexylcyclohexanol,and another part is directly hydrogenated to cyclohexylcyclohexanone.The hydrogenated intermediates of2-cyclohexylphenol have higher deoxygenation barriers than 2-cyclohexylphenol and cyclohexylcy clohexanol.During the hydrogenation process of cyclohexylcyclohexanone to cyclohexylcyclohexanol,the intermediate 26,formed by adding H to O atom of cyclohexylcyclohexanone,exhibits the lowest deoxygenation barrier of 1.08 eV.High hydrogen coverage may promote the hydrogenation of tetrahydrodibenzofuran,hexahydrodibenzofuran,and intermediate 26 to generate dodecahydrodibenzofuran and cyclohexylcyclohexanol.This dibenzofuran hydrodeoxygenation reaction mechanism corroborates well with previous experimental results and provides a theoretical basis for further optimization of the design of nickel-based catalysts.展开更多
Herein,we report a borane-promoted reductive deoxygenation coupling reaction to synthesize sulfides.This reaction features excellent functional group compatibility,high efficiency,broad substrate scope,and application...Herein,we report a borane-promoted reductive deoxygenation coupling reaction to synthesize sulfides.This reaction features excellent functional group compatibility,high efficiency,broad substrate scope,and application in late-stage functionalization of biomolecules.Preliminary mechanistic studies suggest diaryl sulfides are the intermediates of this reaction.Moreover,the real active aryl sulfide anions may be generated in situ with the aid of B2pin2 and react with alkyl tosylates through a concerted SN2 pathway.展开更多
An efficient and practical radical chain deoxygenation method by phosphorus centered radicals generated from hypophosphorous acid was developed in the synthesis of analogues of paclitaxel.
The reductive deoxygenation of aldehydes and ketones into the corresponding alkanes is accomplished by LiAlH4, in the presence of Lewis acid InBr3. It provides a convenient method to complete the transformation from c...The reductive deoxygenation of aldehydes and ketones into the corresponding alkanes is accomplished by LiAlH4, in the presence of Lewis acid InBr3. It provides a convenient method to complete the transformation from carbonyl compounds to alkanes.展开更多
An incubation experiment was conducted to simulate the effect of flooding onwater deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated 'floodwater'could be deoxygenated immediately ...An incubation experiment was conducted to simulate the effect of flooding onwater deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated 'floodwater'could be deoxygenated immediately following 'flooding' and it is likelythat this was caused mainlyby decomposition of organic debris from the inundated plants. Deoxygenation eventually led to thedepletion of dissolved oxygen (DO) in the 'floodwater' and it is highly possible that this resultedin the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide. and organic nitrogento ammonia (ammonification). The accumulation of these reduced substances allows the 'floodwater'to develop DO-consuming capacity (DOCC). When the 'floodwater' is mixed with the introducedoxygenated water, apart from the dilution effects, the reduced substances contained in the'floodwater' oxidize to further consume DO carried by the introduced water. However, it appears thatthe DO drop in the mixed water can only last for a few hours if no additional DO-depleted'floodwater' is added. Entry of atmospheric oxygen into the water can raise the DO level of themixed water arid lower water pH through the oxidation of the reduced substances.展开更多
The reactions of halocarbenes with pre-aromatic ketones 1, 2 resulted in cyclopropanation and deoxygenation products. The varying product ratio could be accounted for by a mechanism involving the carbonyl ylide interm...The reactions of halocarbenes with pre-aromatic ketones 1, 2 resulted in cyclopropanation and deoxygenation products. The varying product ratio could be accounted for by a mechanism involving the carbonyl ylide intermediate.展开更多
To produce paraffin from hydrogenation/deoxygenation of palmitic acid,model compound of bio-oil obtained by hydrothermal liquefaction(HTL)of microalgae has been an attractive focus in recent years.In order to avoid en...To produce paraffin from hydrogenation/deoxygenation of palmitic acid,model compound of bio-oil obtained by hydrothermal liquefaction(HTL)of microalgae has been an attractive focus in recent years.In order to avoid energy-intensive separation process of water and bio-oil,it is of importance that deoxygenation upgrading of fatty acids under hydrothermal conditions similar to HTL process.Herein,it is the first time to explore the application of activated carbon(AC)-supported non-noble-metal catalysts,such as Ni,Co,and Mo,and so on,in the hydrothermal hydrogenation/deoxygenation of long-chain fatty acids,and the obtained Ni/AC-H(the Ni/AC was further H_(2)pre-reduced)is one of the best catalysts.In addition,it is found that the catalytic activity can be further improved by H_(2)pre-reduction of catalyst.Characterization results that are more low valences of nickel and oxygen vacancy can be obtained after H_(2)pre-reduction,thus significant promoting the deoxygenation especially the decarbonylation pathway of fatty acids.The total alkanes yield can reaches 95.9%at optimal conditions(280℃,360 min).This work confirmed that the low-priced AC-supported non-noble-metal catalysts have great potential compared with the noble-metal catalyst,in hydrothermal upgrading of bio-oil.展开更多
The deoxygenation reaction of heptanones, cycloheptanone, cycloheptatrienone or substituted cycloheptatrienone with dihalo-carbene results in carbon monoxide and corresponding halides. The yield of CO produced by 2 , ...The deoxygenation reaction of heptanones, cycloheptanone, cycloheptatrienone or substituted cycloheptatrienone with dihalo-carbene results in carbon monoxide and corresponding halides. The yield of CO produced by 2 , 4 , 6-triphenylcycloheptatrienone is 2.6-3.5 times as high as that produced by the saturated heptanones. The structures, energies, charge distributions, bond orders, and other relative parameters of the dihalocarbonyl glides were calculated by using the SCF-MNDO method. The obtained data reveal that the ylides from cycloheptatrienone have aromatic structure and are different from those produced from saturated cycloheptanone. The reactivities of the dihalocarbonyl ylides are discussed. It is proposed that this aromatic structure should be responsible for the high yield of CO from the reaction of cycloheptatrienone with dihalocarbene.展开更多
The traditional deoxygenation techniques for cyclodextrin induced room temperature phosphorescence (CD-RTP) include N-2(g)purging([1]) and Na2SO3 chemical deoxygenation. In this paper, with 1-bromocyclohexane (1-BrCH)...The traditional deoxygenation techniques for cyclodextrin induced room temperature phosphorescence (CD-RTP) include N-2(g)purging([1]) and Na2SO3 chemical deoxygenation. In this paper, with 1-bromocyclohexane (1-BrCH) as an external heavy atom perturber, 7,8-benzoquinoline (7,8-BQ) was used as a model compound, hydrogen and carbon dioxide are used for deoxygenation in CD-RTP and compared with two traditional deoxygenation techniques. The results show that the new deoxygenation techniques have obvious advantages such as simpler facilities, faster speed of deoxygenation and wider acidity range etc.展开更多
Fatty acids with different chain length were deoxygenated in the absence of hydrogen (caprylic acid (CA), lauric acid (LA) and stearic acid (SA)). The catalytic tests were carried over Pd-containing catalysts out in a...Fatty acids with different chain length were deoxygenated in the absence of hydrogen (caprylic acid (CA), lauric acid (LA) and stearic acid (SA)). The catalytic tests were carried over Pd-containing catalysts out in a batch reactor under inert gas for 6 h at 250°C to 350°C and pressures from 18 to 75 bar in the absence of additionally fed hydrogen. Pd-containing catalysts were tested;the best performing catalyst was 10% Pd/C with 63% undecane yield at 327°C. These catalysts were used for a comparative decarboxylation of CA, LA and SA. At equal reaction conditions (300°C, 6 h), the chain length of the fatty acid had a strong impact on the conversion, which was steadily increasing, whereas the alkane selectivity ran through a maximum. This work demonstrated the usability of Pd-containing catalysts for the decarboxylation of various fatty acids in the absence of additionally fed hydrogen with respect to the manufacture of hydrocarbons that can be used as blending components for fuels.展开更多
Porous carbon-encapsulated Ni and Ni-Sn intermetallic compound catalysts were prepared by the one-pot extended Stöber method followed by carbonization and tested for in-situ hydrothermal deoxygenation of methyl p...Porous carbon-encapsulated Ni and Ni-Sn intermetallic compound catalysts were prepared by the one-pot extended Stöber method followed by carbonization and tested for in-situ hydrothermal deoxygenation of methyl palmitate with methanol as the hydrogen donor.During the catalyst preparation,Sn doping reduces the size of carbon spheres,and the formation of Ni-Sn intermetallic compounds restrain the graphitization,contributing to larger pore volume and pore diameter.Consequently,a more facile mass transfer occurs in carbon-encapsulated Ni-Sn intermetallic compound catalysts than in carbonencapsulated Ni catalysts.During the in-situ hydrothermal deoxygenation,the synergism between Ni and Sn favors palmitic acid hydrogenation to a highly reactive hexadecanal that easily either decarbonylate to n-pentadecane or is hydrogenated to hexadecanol.At high reaction temperature,hexadecanol undergoes dehydrogenation-decarbonylation,generating n-pentadecane.Also,the C-C bond hydrolysis and methanation are suppressed on Ni-Sn intermetallic compounds,favorable for increasing the carbon yield and reducing the H_(2) consumption.The npentadecane and n-hexadecane yields reached 88.1%and 92.8%on carbon-encapsulated Ni_(3) Sn_(2) intermetallic compound at 330℃.After washing and H_(2) reduction,the carbon-encapsulated Ni_(3) Sn_(2) intermetallic compound remains stable during three recycling cycles.This is ascribed to the carbon confinement that effectively suppresses the sintering and loss of metal particles under harsh hydrothermal conditions.展开更多
The current world energy crisis and increasing environmental concerns over global climate change from combusting fossil fuel are driving researchers into a new route to produce fuels via sustainable resource to meet t...The current world energy crisis and increasing environmental concerns over global climate change from combusting fossil fuel are driving researchers into a new route to produce fuels via sustainable resource to meet the demands of human. In recent years, deoxygenation as an alternative method has been applied in the production of hydrocarbon fuels, particularly via the deoxygenation of fatty acids and triglycerides from seed oils and fats, producing hydrocarbon fuels entirely fungible with fossil fuels. The deoxygenation of biobased feedstock to fuel-like hydrocarbons is critically reviewed in this article. The review mainly discusses the use of feedstock, innovation of catalysts, and the reaction mechanism involved in the production of hydrocarbon fuels via deoxygenation progress.展开更多
Efficient conversion of lignin to fine chemicals and biofuel become more and more attractive in biorefinery. In this work, we used a series of silica-alumina catalysts (i.e., SiO2-Al2O3, HY, Hβ, and HZSM-5) to degr...Efficient conversion of lignin to fine chemicals and biofuel become more and more attractive in biorefinery. In this work, we used a series of silica-alumina catalysts (i.e., SiO2-Al2O3, HY, Hβ, and HZSM-5) to degrade lignin into arenes and phenols. The relationship between the catalyst structure and lignin depolymerization performance was investigated. The results showed that both acidity and pore size of the catalyst could influence the conversion of lignin. In the volatilizable product, phenols were identified as the main phenolic monomers via gas chromatography-mass spectrometer. SIO2-Al2O3 was the most efficient catalyst, giving 90.96% degree of conversion, 12.91% yield of phenols, and 2.41% yield of arenes in ethanol at 280℃ for 4 h. The Fourier transform infrared spectroscopy and ^1H nuclear magnetic resonance spectroscopy analysis demonstrated that deoxygenation and alkylation occurred in this process. The effect of solvents was also investigated and the results showed that ethanol was the most efficient solvent.展开更多
The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first disco...The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first discovered that iron carbide catalysts displayed high efficiency and selectivity in the catalytic deoxygenative homo-coupling of benzyl alcohols into bibenzyls using H_(2)as the reductant.Ir-promoted Fe0@Fe_(5)C_(2)gave the best performance among the investigated catalysts,and a broad scope of substrates with diverse functional groups could be smoothly converted into bibenzyls,with the yield up to 85%.In addition,in the presence of alkenes,three-component coupling reactions between alcohols and alkenes were also for the first time achieved to construct more complex multi-ring molecules.The radical-trapping experiment and FTIR measurements revealed the radical nature of the reaction and the significantly promoted C–O bond activation after carbonization,respectively.This work will provide guidelines for the rational design of efficient and selective catalysts for the alcohol-involved carbon-carbon coupling reactions.展开更多
The catalytic cracking of coal tar asphaltene(CTA)pyrolysis vapors was carried out over transition metalion modified zeolites to promote the generation of light aromatic hydrocarbons(L-ArHs)in a pyrolysisgas chromatog...The catalytic cracking of coal tar asphaltene(CTA)pyrolysis vapors was carried out over transition metalion modified zeolites to promote the generation of light aromatic hydrocarbons(L-ArHs)in a pyrolysisgas chromatography/mass spectrometry(Py-GC/MS)micro-reactor system.The effects of ultra stable Y(USY),Co/USY and Mo/USY on the selectivity and yield of L-ArHs products and the extent of deoxygenation(Edeoxygenation),lightweight(Elightweight)from CTA pyrolysis volatiles were investigated.Results showed that the yields of L-ArHs are mainly controlled by the acid sites and specific surface area of the catalysts,while the deoxygenation effect is determined by theirs pore size.The Eligltweight of CTA pyrolysis volatiles over USY is 9.65%,while the Edeoxygenation of CTA pyrolysis volatiles over Mo/USY reaches 20.85%.Additionally,the modified zeolites(Mo/USY and Co/USY)exhibit better performance than USY on L-ArHs production,owing to the synergistic effect of metal ions(Mo,Co)and acid sites of USY.Compared with the non-catalytic fast pyrolysis of CTA,the total yield of L-ArHs obtained over USY(4032 mg·kg^(-1)),Co/USY(4363 mg·kg^(-1))and Mo/USY(4953 mg·kg^(-1))were increased by 27.03%,38.19%and 54.78%,respectively.Furthermore,the possible catalytic conversion mechanism of transition metal ion(Co and Mo)modified zeolites was proposed based on the distribution of products and the characterizations of catalysts.展开更多
Compound 1 as a key intermediate of 1, 7, 9-trideoxytaxol was synthesized in ten steps from a biosynthetically available taxane, Sinenxan A. The key steps in the synthesis were deoxygenation at C-14, allylic oxidatio...Compound 1 as a key intermediate of 1, 7, 9-trideoxytaxol was synthesized in ten steps from a biosynthetically available taxane, Sinenxan A. The key steps in the synthesis were deoxygenation at C-14, allylic oxidation at C-13 and construction of the oxetane ring.展开更多
In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,...In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,CaO particles has been successfully embedded on the bio-char surface.During the catalytic pyrolysis process,CaO/biochar showed a good catalytic performance on the deoxygenation of soybean oil.Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically,higher pyrolysis temperature lead to seriously cracking reactions,lower bio-oil yield and higher gases yield,and lower pyrolysis temperature lead to higher bio-oil yield with higher oxygenated compounds content and lower hydrocarbons contents,the suitable pyrolysis temperature was around 650℃.Under the optimal conditions(650℃ with WHSV at 6.4 h^(−1) and carrier gas flow rate at 100 ml/min),the selectivity(%)of hydrocarbons in the bio-oil was more than 90%.CaO/bio-char catalyst still shows good catalytic deoxygenation activity after 4 cycles.1 g of CaO/bio-char catalyst can catalyze pyrolysis of 32 g of soybean oil to produce high-quality liquid fuel.Bio-char based catalyst has been proved to be a promising catalyst for catalytic conversion of triglyceride-based lipids into high quality liquid biofuel.展开更多
基金supported by the National Key R&D Program of China (No. 2021YFE0104900)Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515030018)
文摘The valorization of biomass to produce biofuels has become a heavily investigated field due to the depletion of fossil fuels and environmental concerns.Among them,the research on deoxygenation of fatty acids or esters derived from biomass as well as municipal sludge organics to produce diesel-like hydrocarbons has become a hot topic.Fatty acid is a key intermediate derived from ester hydrolysis,therefore has attracted more attention as a model compound.In this review,we first introduce and compare the three reaction pathways of hydrodeoxygenation,decarboxylation and decarbonylation,for the deoxygenation of fatty acids and esters.The preference of reaction pathway is closely related to the type of raw materials and catalysts as well as reaction conditions.The special purpose of this review is to summarize the dilemma and possible strategies for deoxygenation of fatty acids,which is expected to provide guidance for future exploration and concentrates.The atom utilization along with stability during reaction in a long time is the most important index for commercial economy.Herein,we propose that the rational design and delicate synthesis of stable single-atom non-noble catalysts may be the best solution.The ultimately goal is aiming to develop sustainable production of green diesel hydrocarbons.
基金supported by the Scientific and technological innovation project of Ningxia Coal Industry Co.,LTD,China Energy Investment(NXMY-24-36)。
文摘The selective catalytic deoxygenation of oxy-organics in Fischer-Tropsch mixed oil for its high value utilization is challenging.Herein,a BaCO_(3)/γ-Al_(2)O_(3) catalyst was prepared calciningγ-Al_(2)O_(3) with BaCO_(3),and the acid-alkalinity of the catalyst was regulated by introducing alkaline Ba basic sties.In a co ntinuous fixed-bed reactor with a feed mass space velocity of 1 h~(-1)and reaction temperature of 330℃,BaCO_(3)/γ-Al_(2)O_(3) catalyst can efficiently catalyzed the deoxygenation removal of 1-octanol in Fischer-Tropsch C10mixture oil.It also inhibited the isomerization of 1-decene in the C10 mixture.The catalytic deoxygenation kinetics of 1-octanol were also studied.The reaction was endothermic with an activation energy of 64 kJ·mol^(-1)and a reaction order of 2.In addition,theoretical studies revealed the adsorption and activation of 1-decene on the Lewis acidic site and the alkaline Ba basic sites,1-decene was more easily underwent isomerization into 2-decene at Lewis acid sites.This research provides a useful method to enable the industrial application of catalytic deoxygenation of alcohols in Fischer-Tropsch synthetic oil.
基金financially supported by the National Natural Science Foundation of China (No.21536007)the 111 Project (B17030)+1 种基金support from China Scholarship Council (CSC No.202006240156)the Spanish Ministry of Science,Innovation and Universities for the Juan de la Cierva (JdC)fellowships (Grant Numbers FJCI-2016-30847 and IJC2018-037110-I)awarded.
文摘The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-ranged hydrocarbons,bio-jet fuels,or fatty alcohols with controllable selectivity is especially attractive in natural oil feedstock biorefineries.This review presents recent progress in catalytic deoxygenation of natural oils or related model compounds(e.g.,fatty acids)to renewable liquid fuels(green diesel and bio-jet fuels)and valuable fatty alcohols(unsaturated and saturated fatty alcohols).Besides,it discusses and compares the existing and potential strategies to control the product selectivity over heterogeneous catalysts.Most research conducted and reviewed has only addressed the production of one category;therefore,a new integrative vision exploring how to direct the process toward fuel and/or chemicals is urgently needed.Thus,work conducted to date addressing the development of new catalysts and studying the influence of the reaction parameters(e.g.,temperature,time and hydrogen pressure)is summarized and critically discussed from a green and sustainable perspective using efficiency indicators(e.g.,yields,selectivity,turnover frequencies and catalysts lifetime).Special attention has been given to the chemical transformations occurring to identify key descriptors to tune the selectivity toward target products by manipulating the reaction conditions and the structures of the catalysts.Finally,the challenges and future research goals to develop novel and holistic natural oil biorefineries are proposed.As a result,this critical review provides the readership with appropriate information to selectively control the transformation of natural oils into either biofuels and/or value-added chemicals.This new flexible vision can help pave the wave to suit the present and future market needs.
基金financial support from the National Key Research and Development Program of China(2016YFB0600305)National Natural Science Foundation of China(21808153,22078220)。
文摘The low-temperature coal tar contains a considerable number of oxygen-containing compounds,which results in poor quality.The catalytic hydrodeoxygenation of oxygen-containing compound to an added-value chemical compound is one of the most efficient methods to upgrade coal tar.In this study,density functional theory calculations are employed to assess and analyze in detail the hydrodeoxygenation of dibenzofuran,as a model compound of coal tar,on the Ni(111)surface.The obtained results indicate that dibenzofuran can be firstly hydrogenated to tetra hy d rod i be nzofura n and hexahydfodibenzofufan.The five-membered-ring opening reaction of tetrahydrodibenzofuran is more straightforward than that of hexahydrodibenzofuran(Ea=0.71 eV vs.1.66 eV).Then,both pathways generate an intermediate 2-cyclohexylphenoxy compound.One part of 2-cyclohexylphenoxy is hydrogenated to 2-cyclohexylphenol and consecutively hydrogenated to cyclohexylcyclohexanol,and another part is directly hydrogenated to cyclohexylcyclohexanone.The hydrogenated intermediates of2-cyclohexylphenol have higher deoxygenation barriers than 2-cyclohexylphenol and cyclohexylcy clohexanol.During the hydrogenation process of cyclohexylcyclohexanone to cyclohexylcyclohexanol,the intermediate 26,formed by adding H to O atom of cyclohexylcyclohexanone,exhibits the lowest deoxygenation barrier of 1.08 eV.High hydrogen coverage may promote the hydrogenation of tetrahydrodibenzofuran,hexahydrodibenzofuran,and intermediate 26 to generate dodecahydrodibenzofuran and cyclohexylcyclohexanol.This dibenzofuran hydrodeoxygenation reaction mechanism corroborates well with previous experimental results and provides a theoretical basis for further optimization of the design of nickel-based catalysts.
基金support from Natural Science Foundation of Sichuan(No.2021YJ0413)Sichuan Key Laboratory of Medical Imaging(North Sichuan Medical College,No.SKLMI201901)+2 种基金Strategic Cooperation of Science and Technology between Nanchong City and North Sichuan Medical College(Nos.19SXHZ0441,19SXHZ0227)Chongqing Postdoctoral Science Foundation(No.cstc2020jcyj-bshX0052)China Postdoctoral Science Foundation(No.2020M673121).
文摘Herein,we report a borane-promoted reductive deoxygenation coupling reaction to synthesize sulfides.This reaction features excellent functional group compatibility,high efficiency,broad substrate scope,and application in late-stage functionalization of biomolecules.Preliminary mechanistic studies suggest diaryl sulfides are the intermediates of this reaction.Moreover,the real active aryl sulfide anions may be generated in situ with the aid of B2pin2 and react with alkyl tosylates through a concerted SN2 pathway.
文摘An efficient and practical radical chain deoxygenation method by phosphorus centered radicals generated from hypophosphorous acid was developed in the synthesis of analogues of paclitaxel.
基金the National Natural Science Foundation of China(29872018&29972026)the Key Laboratory of Elemento-oiganic Cheraistiy,Nankai University and RFDP,China's Ministry of Higher Education(1999005520)for their financial support
文摘The reductive deoxygenation of aldehydes and ketones into the corresponding alkanes is accomplished by LiAlH4, in the presence of Lewis acid InBr3. It provides a convenient method to complete the transformation from carbonyl compounds to alkanes.
基金Project partly supported by Australian Research Council and NSW Agriculture.
文摘An incubation experiment was conducted to simulate the effect of flooding onwater deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated 'floodwater'could be deoxygenated immediately following 'flooding' and it is likelythat this was caused mainlyby decomposition of organic debris from the inundated plants. Deoxygenation eventually led to thedepletion of dissolved oxygen (DO) in the 'floodwater' and it is highly possible that this resultedin the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide. and organic nitrogento ammonia (ammonification). The accumulation of these reduced substances allows the 'floodwater'to develop DO-consuming capacity (DOCC). When the 'floodwater' is mixed with the introducedoxygenated water, apart from the dilution effects, the reduced substances contained in the'floodwater' oxidize to further consume DO carried by the introduced water. However, it appears thatthe DO drop in the mixed water can only last for a few hours if no additional DO-depleted'floodwater' is added. Entry of atmospheric oxygen into the water can raise the DO level of themixed water arid lower water pH through the oxidation of the reduced substances.
文摘The reactions of halocarbenes with pre-aromatic ketones 1, 2 resulted in cyclopropanation and deoxygenation products. The varying product ratio could be accounted for by a mechanism involving the carbonyl ylide intermediate.
基金the financial support from National Natural Science Foundation of China(21838006,21776159)National Key Research and Development Program of China(2018YFC1902101)。
文摘To produce paraffin from hydrogenation/deoxygenation of palmitic acid,model compound of bio-oil obtained by hydrothermal liquefaction(HTL)of microalgae has been an attractive focus in recent years.In order to avoid energy-intensive separation process of water and bio-oil,it is of importance that deoxygenation upgrading of fatty acids under hydrothermal conditions similar to HTL process.Herein,it is the first time to explore the application of activated carbon(AC)-supported non-noble-metal catalysts,such as Ni,Co,and Mo,and so on,in the hydrothermal hydrogenation/deoxygenation of long-chain fatty acids,and the obtained Ni/AC-H(the Ni/AC was further H_(2)pre-reduced)is one of the best catalysts.In addition,it is found that the catalytic activity can be further improved by H_(2)pre-reduction of catalyst.Characterization results that are more low valences of nickel and oxygen vacancy can be obtained after H_(2)pre-reduction,thus significant promoting the deoxygenation especially the decarbonylation pathway of fatty acids.The total alkanes yield can reaches 95.9%at optimal conditions(280℃,360 min).This work confirmed that the low-priced AC-supported non-noble-metal catalysts have great potential compared with the noble-metal catalyst,in hydrothermal upgrading of bio-oil.
文摘The deoxygenation reaction of heptanones, cycloheptanone, cycloheptatrienone or substituted cycloheptatrienone with dihalo-carbene results in carbon monoxide and corresponding halides. The yield of CO produced by 2 , 4 , 6-triphenylcycloheptatrienone is 2.6-3.5 times as high as that produced by the saturated heptanones. The structures, energies, charge distributions, bond orders, and other relative parameters of the dihalocarbonyl glides were calculated by using the SCF-MNDO method. The obtained data reveal that the ylides from cycloheptatrienone have aromatic structure and are different from those produced from saturated cycloheptanone. The reactivities of the dihalocarbonyl ylides are discussed. It is proposed that this aromatic structure should be responsible for the high yield of CO from the reaction of cycloheptatrienone with dihalocarbene.
文摘The traditional deoxygenation techniques for cyclodextrin induced room temperature phosphorescence (CD-RTP) include N-2(g)purging([1]) and Na2SO3 chemical deoxygenation. In this paper, with 1-bromocyclohexane (1-BrCH) as an external heavy atom perturber, 7,8-benzoquinoline (7,8-BQ) was used as a model compound, hydrogen and carbon dioxide are used for deoxygenation in CD-RTP and compared with two traditional deoxygenation techniques. The results show that the new deoxygenation techniques have obvious advantages such as simpler facilities, faster speed of deoxygenation and wider acidity range etc.
文摘Fatty acids with different chain length were deoxygenated in the absence of hydrogen (caprylic acid (CA), lauric acid (LA) and stearic acid (SA)). The catalytic tests were carried over Pd-containing catalysts out in a batch reactor under inert gas for 6 h at 250°C to 350°C and pressures from 18 to 75 bar in the absence of additionally fed hydrogen. Pd-containing catalysts were tested;the best performing catalyst was 10% Pd/C with 63% undecane yield at 327°C. These catalysts were used for a comparative decarboxylation of CA, LA and SA. At equal reaction conditions (300°C, 6 h), the chain length of the fatty acid had a strong impact on the conversion, which was steadily increasing, whereas the alkane selectivity ran through a maximum. This work demonstrated the usability of Pd-containing catalysts for the decarboxylation of various fatty acids in the absence of additionally fed hydrogen with respect to the manufacture of hydrocarbons that can be used as blending components for fuels.
文摘Porous carbon-encapsulated Ni and Ni-Sn intermetallic compound catalysts were prepared by the one-pot extended Stöber method followed by carbonization and tested for in-situ hydrothermal deoxygenation of methyl palmitate with methanol as the hydrogen donor.During the catalyst preparation,Sn doping reduces the size of carbon spheres,and the formation of Ni-Sn intermetallic compounds restrain the graphitization,contributing to larger pore volume and pore diameter.Consequently,a more facile mass transfer occurs in carbon-encapsulated Ni-Sn intermetallic compound catalysts than in carbonencapsulated Ni catalysts.During the in-situ hydrothermal deoxygenation,the synergism between Ni and Sn favors palmitic acid hydrogenation to a highly reactive hexadecanal that easily either decarbonylate to n-pentadecane or is hydrogenated to hexadecanol.At high reaction temperature,hexadecanol undergoes dehydrogenation-decarbonylation,generating n-pentadecane.Also,the C-C bond hydrolysis and methanation are suppressed on Ni-Sn intermetallic compounds,favorable for increasing the carbon yield and reducing the H_(2) consumption.The npentadecane and n-hexadecane yields reached 88.1%and 92.8%on carbon-encapsulated Ni_(3) Sn_(2) intermetallic compound at 330℃.After washing and H_(2) reduction,the carbon-encapsulated Ni_(3) Sn_(2) intermetallic compound remains stable during three recycling cycles.This is ascribed to the carbon confinement that effectively suppresses the sintering and loss of metal particles under harsh hydrothermal conditions.
基金supported by the National Natural Science Foundation of China(21303109)the Application Foundation Program of Sichuan Province(2013JY0007)
文摘The current world energy crisis and increasing environmental concerns over global climate change from combusting fossil fuel are driving researchers into a new route to produce fuels via sustainable resource to meet the demands of human. In recent years, deoxygenation as an alternative method has been applied in the production of hydrocarbon fuels, particularly via the deoxygenation of fatty acids and triglycerides from seed oils and fats, producing hydrocarbon fuels entirely fungible with fossil fuels. The deoxygenation of biobased feedstock to fuel-like hydrocarbons is critically reviewed in this article. The review mainly discusses the use of feedstock, innovation of catalysts, and the reaction mechanism involved in the production of hydrocarbon fuels via deoxygenation progress.
文摘Efficient conversion of lignin to fine chemicals and biofuel become more and more attractive in biorefinery. In this work, we used a series of silica-alumina catalysts (i.e., SiO2-Al2O3, HY, Hβ, and HZSM-5) to degrade lignin into arenes and phenols. The relationship between the catalyst structure and lignin depolymerization performance was investigated. The results showed that both acidity and pore size of the catalyst could influence the conversion of lignin. In the volatilizable product, phenols were identified as the main phenolic monomers via gas chromatography-mass spectrometer. SIO2-Al2O3 was the most efficient catalyst, giving 90.96% degree of conversion, 12.91% yield of phenols, and 2.41% yield of arenes in ethanol at 280℃ for 4 h. The Fourier transform infrared spectroscopy and ^1H nuclear magnetic resonance spectroscopy analysis demonstrated that deoxygenation and alkylation occurred in this process. The effect of solvents was also investigated and the results showed that ethanol was the most efficient solvent.
文摘The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first discovered that iron carbide catalysts displayed high efficiency and selectivity in the catalytic deoxygenative homo-coupling of benzyl alcohols into bibenzyls using H_(2)as the reductant.Ir-promoted Fe0@Fe_(5)C_(2)gave the best performance among the investigated catalysts,and a broad scope of substrates with diverse functional groups could be smoothly converted into bibenzyls,with the yield up to 85%.In addition,in the presence of alkenes,three-component coupling reactions between alcohols and alkenes were also for the first time achieved to construct more complex multi-ring molecules.The radical-trapping experiment and FTIR measurements revealed the radical nature of the reaction and the significantly promoted C–O bond activation after carbonization,respectively.This work will provide guidelines for the rational design of efficient and selective catalysts for the alcohol-involved carbon-carbon coupling reactions.
基金financed by the projects of the National Natural Science Foundation of China(21776229,21908180,22078266)the National Key Research&Development Program of China(2018YFB0604603)the Key Research and Development Program of Shaanxi(2020ZDLGY11-02,2018ZDXM-GY-167)。
文摘The catalytic cracking of coal tar asphaltene(CTA)pyrolysis vapors was carried out over transition metalion modified zeolites to promote the generation of light aromatic hydrocarbons(L-ArHs)in a pyrolysisgas chromatography/mass spectrometry(Py-GC/MS)micro-reactor system.The effects of ultra stable Y(USY),Co/USY and Mo/USY on the selectivity and yield of L-ArHs products and the extent of deoxygenation(Edeoxygenation),lightweight(Elightweight)from CTA pyrolysis volatiles were investigated.Results showed that the yields of L-ArHs are mainly controlled by the acid sites and specific surface area of the catalysts,while the deoxygenation effect is determined by theirs pore size.The Eligltweight of CTA pyrolysis volatiles over USY is 9.65%,while the Edeoxygenation of CTA pyrolysis volatiles over Mo/USY reaches 20.85%.Additionally,the modified zeolites(Mo/USY and Co/USY)exhibit better performance than USY on L-ArHs production,owing to the synergistic effect of metal ions(Mo,Co)and acid sites of USY.Compared with the non-catalytic fast pyrolysis of CTA,the total yield of L-ArHs obtained over USY(4032 mg·kg^(-1)),Co/USY(4363 mg·kg^(-1))and Mo/USY(4953 mg·kg^(-1))were increased by 27.03%,38.19%and 54.78%,respectively.Furthermore,the possible catalytic conversion mechanism of transition metal ion(Co and Mo)modified zeolites was proposed based on the distribution of products and the characterizations of catalysts.
基金This research work was financially supported by NNSFC.
文摘Compound 1 as a key intermediate of 1, 7, 9-trideoxytaxol was synthesized in ten steps from a biosynthetically available taxane, Sinenxan A. The key steps in the synthesis were deoxygenation at C-14, allylic oxidation at C-13 and construction of the oxetane ring.
基金The paper was supported by the Natural Science Foundation of China(No.51906112)Natural Science Foundation of Jiangsu Province(No.BK20180548)+1 种基金China Postdoctoral Science Foundation(2019M651852)“Innovation&Entrepreneurship Talents”Introduction Plan of Jiangsu Province.
文摘In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,CaO particles has been successfully embedded on the bio-char surface.During the catalytic pyrolysis process,CaO/biochar showed a good catalytic performance on the deoxygenation of soybean oil.Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically,higher pyrolysis temperature lead to seriously cracking reactions,lower bio-oil yield and higher gases yield,and lower pyrolysis temperature lead to higher bio-oil yield with higher oxygenated compounds content and lower hydrocarbons contents,the suitable pyrolysis temperature was around 650℃.Under the optimal conditions(650℃ with WHSV at 6.4 h^(−1) and carrier gas flow rate at 100 ml/min),the selectivity(%)of hydrocarbons in the bio-oil was more than 90%.CaO/bio-char catalyst still shows good catalytic deoxygenation activity after 4 cycles.1 g of CaO/bio-char catalyst can catalyze pyrolysis of 32 g of soybean oil to produce high-quality liquid fuel.Bio-char based catalyst has been proved to be a promising catalyst for catalytic conversion of triglyceride-based lipids into high quality liquid biofuel.