To confirm the effects of AlMnCa and AlMnFe alloys on the deoxidization and modification of Al2O3 inclusions, experiments of 4-heat low carbon and low silicon aluminum killed steels deoxidized by AlMnCa and AlMnFe all...To confirm the effects of AlMnCa and AlMnFe alloys on the deoxidization and modification of Al2O3 inclusions, experiments of 4-heat low carbon and low silicon aluminum killed steels deoxidized by AlMnCa and AlMnFe alloys were done in a MoSi2 furnace at 1 873 K. It is found that the 1^# AlMnCa alloy has the best ability of deoxidization and modification of Al2O3 inclusions than 2^# AlMnCa and AlMnFe alloys. Steel A deoxidized by 1^# AlMnCa alloy has the lowest total oxygen content in the terminal steel, which is 37× 10^-6. Most of the inclusions in the steel deoxidized by 1^# AlMnCa alloy are spherical CaO-eontaining compound inclusions, and 89.1% of them are smatter than 10 μm. The diameter of the inclusion bigger than 50 μm is not found in the final steels deoxidized by AlMnCa alloys. Whereas, for the steels deoxidized by AlMnFe alloys, most inclusions in the terminal steel are Al2O3 or Al2O3-MnO inclusions, and a few of them are spherical, and only 76.8% of them are smaller than 10 μm. Some in- clusions bigger than 50μm are found in the steel D deoxidized by AlMnFe alloy.展开更多
The influence of crucible and vacuum on oxygen content of CuCr25 prepared by vacuum induction melting (VIM) has been investigated. The experimental results show that the selection of crucible is very important. Alkali...The influence of crucible and vacuum on oxygen content of CuCr25 prepared by vacuum induction melting (VIM) has been investigated. The experimental results show that the selection of crucible is very important. Alkaline oxide MgO crucible can result in increment of oxygen content and segregation of Cr in the CuCr25 alloys prepared. Neutral oxide Al 2O 3 crucible has no contribution to oxygen in CuCr25. The results also indicate that some kinds of deoxidant, such as Al, are further beneficial to deoxidization of the alloys. [展开更多
Dissolved oxygen in the steel at the terminal of the converter smelting process is the main cause for the formation of oxide inclusions, and the high terminal oxygen content worsens the steel cleanness. However, post ...Dissolved oxygen in the steel at the terminal of the converter smelting process is the main cause for the formation of oxide inclusions, and the high terminal oxygen content worsens the steel cleanness. However, post stirring in a combined blowing converter can promote the carbon-oxygen reaction in the liquid steel and reduce the dissolved oxygen content at the terminal of the converter smelting process. Thus, the mathematical model of deoxidization in the post stirring process was obtained, and the rationality of which was further verified by industrial tests. Finally, it is concluded that the product of dissolved carbon and oxygen, i.e. w[C]·w[O], decreases obviously after adopting the new technique of post stirring in the combined blowing converter.展开更多
A new process is proposed to utilize refined ilmenite with high magnesia and calcia contents, which is the main secondary resource from vanadium-bearing titaniferous magnetite in Panzhihua, covering about 40% of the w...A new process is proposed to utilize refined ilmenite with high magnesia and calcia contents, which is the main secondary resource from vanadium-bearing titaniferous magnetite in Panzhihua, covering about 40% of the worlds titanium. The refined ilmenite was first deoxidized to separate the iron in the ore in order to enrich the titanium. The mechanism of chlorination of the titanium-rich slag was analyzed using the HSC chemistry software. Following deoxida-tion, a tandem fluidized bed was applied to chlorinating the titanium-rich slag. Modeling of the tandem fluidized bed ex-plains how this serial operation can effectively improve the convention ratio of TiO2 to TiCl4.展开更多
The metal oxide dissolved in pure copper is usually cuprous oxide (Cu<sub>2</sub>O), so thedeoxidization of pure copper means the reduction of cuprous oxide to copper by addingdeoxidizers such as an elem...The metal oxide dissolved in pure copper is usually cuprous oxide (Cu<sub>2</sub>O), so thedeoxidization of pure copper means the reduction of cuprous oxide to copper by addingdeoxidizers such as an element. It is required that the oxide of this element must be morestable than Cu<sub>2</sub>O, i.e. its decomposition pressure is less than that of Cu<sub>2</sub>O. The more展开更多
This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two exp...This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.展开更多
The electrochemical reduction of nitrate(NO_(3)−)to ammonia(NH_(3))(NO3RR)represents an environmentally sustainable strategy for NH_(3)production while concurrently addressing water pollution challenges.Nevertheless,t...The electrochemical reduction of nitrate(NO_(3)−)to ammonia(NH_(3))(NO3RR)represents an environmentally sustainable strategy for NH_(3)production while concurrently addressing water pollution challenges.Nevertheless,the intrinsic complexity of this multi-step reaction severely constrains both the selectivity and efficiency of NO3RR.Copper-based electrocatalysts have been extensively investigated for NO_(3)RR but often suffer from nitrite(NO_(2)^(−))accumulation,which stems from insufficient NO_(3)^(−)adsorption strength.This limitation often leads to rapid catalyst deactivation,hindered hydrogenation pathways,and reduced overall efficiency.Herein,we report a one-step green chemical reduction method to synthesize PtCuSnCo quarternary alloy nanoparticles with homogeneously distributed elements.Under practical NO3−concentrations,the optimized catalyst exhibited an impressive Faradaic efficiency approaching 100%and an outstanding selectivity of 95.6±2.9%.Mechanistic insights uncovered that SnCo sites robustly facilitated NO_(3)^(−)adsorption,complemented by the proficiency of PtCu sites in NO3−reduction.The synergistic spatial neighborhood effect between SnCo and PtCu sites efficiently stabilizes NO_(3)^(−)deoxygenation and suppresses NO_(2)^(−)accumulation.This tandem architecture achieves a finely tuned balance between adsorption strength and deoxygenation kinetics,enabling highly selective and efficient NO3RR.Our findings emphasize the indispensable role of engineered multi-metallic catalysts in overcoming persistent challenges of NO3RR,paving the way for advanced NH3 synthesis and environmental remediation.展开更多
In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixture...In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixtures with diverse oxygen-containing functional groups,pose a challenge as they cannot be easily separated via distillation for direct utilization.A promising solution to this challenge lies in the efficient removal of oxygen-containing functional groups from LDOs through hydrodeoxygenation(HDO),aiming to yield biomass products with singular components.However,the high dissociation energy of the carbon-oxygen bond,coupled with its similarity to the hydrogenation energy of the benzene ring,creates a competition between deoxygenation and benzene ring hydrogenation.Considering hydrogen consumption and lignin properties,the preference is directed towards generating aromatic hydrocarbons rather than saturated components.Thus,the goal is to selectively remove oxygen-containing functional groups while preserving the benzene ring structure.Studies on LDOs conversion have indicated that the design of active components and optimization of reaction conditions play pivotal roles in achieving selective deoxygenation,but a summary of the correlation between these factors and the reaction mechanism is lacking.This review addresses this gap in knowledge by firstly summarizing the various reaction pathways for HDO of LDOs.It explores the impact of catalyst design strategies,including morphology modulation,elemental doping,and surface modification,on the adsorption-desorption dynamics between reactants and catalysts.Secondly,we delve into the application of advanced techniques such as spectroscopic techniques and computational modeling,aiding in uncovering the true active sites in HDO reactions and understanding the interaction of reactive reactants with catalyst surface-interfaces.Additionally,fundamental insights into selective deoxygenation obtained through these techniques are highlighted.Finally,we outline the challenges that lie ahead in the design of highly active and selective HDO catalysts.These challenges include the development of detection tools for reactive species with high activity at low concentrations,the study of reaction medium-catalyst interactions,and the development of theoretical models that more closely approximate real reaction situations.Addressing these challenges will pave the way for the development of efficient and selective HDO catalysts,thus advancing the field of renewable LDOs conversion.展开更多
A low-carbon,low-cost,and high-efficient method was reported for remarkably improving corrosion resistance of C–Mn structural steel by weak deoxidation.The results showed that,with the total oxygen content(wOT)increa...A low-carbon,low-cost,and high-efficient method was reported for remarkably improving corrosion resistance of C–Mn structural steel by weak deoxidation.The results showed that,with the total oxygen content(wOT)increasing in the tested steel from 41×10^(−6)to 195×10^(−6),both the degree of element segregation and the level of banded microstructure weakened,presenting the lower potential difference between pearlite(P)and ferrite(F),and then smaller galvanic corrosion driving force,and thus effectively improving general corrosion properties.In addition,with wOT growing up,the number and size of inclusions increased,and the shape also changed from long chain or small particle to large particle ball with typical mosaic structure,which could effectively inhibit the preferential dissolution of local component due to multiple complex interfaces,and correspondingly suppress the pitting susceptibility.However,the impact toughness at low temperature of the tested steel reduced with wOT increasing,and then,taking the mechanical properties and corrosion resistance all into account,160×10^(−6) was the optimal oxygen content within the present scope.展开更多
The effect of the initial(Al+Si)/MnO molar ratio and slag composition on MnO recovery from electroslag by remelting at 1773 K was investigated.High-purity aluminum metal and silicon were employed as the deoxidizers to...The effect of the initial(Al+Si)/MnO molar ratio and slag composition on MnO recovery from electroslag by remelting at 1773 K was investigated.High-purity aluminum metal and silicon were employed as the deoxidizers to effectively promote the recovery of manganese metal(MM).The reduction of MnO in slag,through the interaction between molten MM with a deoxidizer and the Na_(2)O-enriched electroslag melt,was assessed both thermodynamically and kinetically.The sulfur content of high-sulfur rejected electrolytic manganese metal(EMM)scrap decreased to 0.58%with high-temperature pretreatment.The mass ratio between slag and high-sulfur rejected EMM scrap is 2/3.When the Al_(2)O_(3)content in the initial slags decreased and the Na_(2)O content increased,the MnO reduction ratio increased.The residual MnO concentration of the slag reduced with increasing the Al–Si deoxidizer content.When the(Al+Si)/MnO molar ratio reached 0.83,the MnO concentration in the final slag was only 3%.A deoxidizer mainly containing aluminum and a small amount of Si could be added to recover MnO from the slag,resulting in the improvement in the cleanliness of final Mn metal.展开更多
The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was ...The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was added to experimental heats for final deoxidizing during BOF tapping, and the refining top slag with strong reducibility, high basicity and high Al2O3 in ladle furnace was used to produce ultra-low oxygen steel and the transformation of nonmetallic inclusions in molten steel was compared by calcium treatment and no calcium treatment. The results show that the transformation of Al2O3--MgO - Al2O3 spinel-CaO-MgO-Al2O3 complex inclusions has been completed for aluminum deoxidation products and calcium treatment to molten steel is unnecessary when using the control technology of ladle furnace refining top slag to produce ultra-low oxygen steel, and the complex inclusions are liquid at the temperature of steelmaking and easily removable to obtain very high cleanliness steel by flotation. Further- more, the problems of nozzle clogging in casting operations do not happen and the remaining oxide inclusions in steel are the relatively lower melting point complex inclusions.展开更多
Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The p...Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The pit propagation rate was evaluated in artificial sea water and 3wt% sea salt solution by simulating occluded corrosion cell (SOCC) test and hanging plate test, respectively. The composition of inclusions and corrosive feature were studied by scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and optical microscopy (OM). The results indicate that sulfide inclusions in steel are the sites for pit nucleation. The sulphide inclusions vary in shape from short spindle-like to long strip-like with increasing deoxidizing degree. Under the same conditions, the lower the deoxidizing degree gets, the lower the pitting initiation susceptibility becomes, and the stronger the resistance to pit propagation exhibits. For steels with different deoxidizing degrees, their pitting initiation susceptibility is mainly influenced by thermodynamic stability, while the pit propagation rate is primarily subject to the characteristics of inclusions in steel.展开更多
In order to reduce the negative effect of gross Al-rich inclusions on high aluminum steel, both thermodynamic calculations and designed deoxidization experiments were performed in condition of different silicon and al...In order to reduce the negative effect of gross Al-rich inclusions on high aluminum steel, both thermodynamic calculations and designed deoxidization experiments were performed in condition of different silicon and aluminum deoxidization sequences. Thermodynamic calculations demonstrated that the complex inclusions with low melting point (harmless inclusions) are more favorable to be formed in condition that the melt was deoxidized using ferrosilicon first and then pure aluminum (Si/A1 deoxidization) than that deoxidized using pure aluminum first and then ferrosilicon (AI/Si deoxidization). Al-rich inclusion decreases 83% from A1/Si deoxidization to Si/A1 deoxidization. The experimental results showed that the total quantity of inclusions decreases by 24% and the proportion of harmless inclusions is doubled when comparing Si/Al deoxidization with Al/Si deoxidization. The morphology of complex inclusion tends to be spherical, and the mean size is less than 5μm in condition of Si/Al deoxidization. The formation mechanism of harmless inclusions was discussed, and it is believed that the inclusions can be controlled reasonably in high aluminum steel using Si/Al deoxidization.展开更多
The recycling rate of rejected electrolytic manganese metal(EMM)scrap can be increased by inhibiting the manganese metal(MM)vaporization during the remelting process with electroslag.However,if the latter is achieved ...The recycling rate of rejected electrolytic manganese metal(EMM)scrap can be increased by inhibiting the manganese metal(MM)vaporization during the remelting process with electroslag.However,if the latter is achieved by reducing the remelting temperature,the desulfurization behavior will deteriorate.Therefore,Na_(2)O-containing electroslag and metallic additive were used to increase the rejected EMM scrap recovery ratio.The respective high-temperature experiment was conducted in a MoSi_(2) electrical resistance furnace filled with fluid argon at 1673 K using five different types of electroslag with the Na_(2)O content ranging from 5.81%to 15.71%.High-purity metallic magnesium and magnesium calcium alloy additives were used as deoxidizers.The addition of Na_(2)O and metallic additives effectively promoted the desulfurization and deoxidization of MM.The removal of sulfur and oxygen by the interaction between Na_(2)O-containing electroslag melt and molten MM with metallic additive was analyzed from the thermodynamic and kinetic standpoints.The effect of Na_(2)O-containing electroslag volatilization on desulfurization and deoxidization was considered.With an increase in Na_(2)O content in the slag,the mass loss rates of Na_(2)O and electroslag rose,as well as the final sulfur partition ratio.If the Na_(2)O content volatilized in the slag melt did not exceed 10.44%,the sulfur removal ratio was increased by high sulfide capacity and CaO activity in all slags due to the addition of Na_(2)O.The rejected EMM scrap deoxidization ratio grew with the increased activity of CaO and reduced activity of Al_(2)O_(3) in the molten slag,caused by the increased Na_(2)O content in the molten slag.The addition of metallic Mg and Mg-Ca alloy indirectly promoted desulfurization and deoxidization by reducing the MnO content in the rejected EMM scrap and growing slag oxidability.The Mg-Ca alloy could also react with dissolved sulfur and oxygen,directly promoting desulfurization and deoxidization processes.The Na_(2)O content in slag should not exceed 10.44%to ensure the high desulfurization and deoxidization abilities,fluidity and low volatilization of slag.展开更多
Multifunctional composite catalyst for carbonyl sulfide hydrolysis under moderate temperature was prepared by impregnation method. The hydrolysis and deoxidization ability of the prepared catalyst was investigated in ...Multifunctional composite catalyst for carbonyl sulfide hydrolysis under moderate temperature was prepared by impregnation method. The hydrolysis and deoxidization ability of the prepared catalyst was investigated in a fixed bed reactor. It was found that deoxidization ability of the prepared catalyst was raised by the increase of the content of potassium loading catalyst and reaction temperature. And the concentration of H2S had no effect on deoxidization while COS improved the deoxidization ratio. And deoxidization rates were nearly scaled up with concentration of H2. The hydrolysis ability was decreased by the decrease of the surface basicity.展开更多
The design, selection and application principles of complex alloys according to the requirements of making low-alloy steels are discussed. The designed complex alloys containing calcium, barium, magnesium, strontium, ...The design, selection and application principles of complex alloys according to the requirements of making low-alloy steels are discussed. The designed complex alloys containing calcium, barium, magnesium, strontium, rare earth elements, etc. should not only be able to deoxidize, desulphurize and refine liquid steel, but also alloy it. The application principles of alloys are as follows: using Si-Mn or Si-Mn-Al alloys for pre-deoxidizing, Si-Al-Ba or Si-Al-Ca-Ba alloys for final deoxidizing and Si-Ca-Ba-Mg(Sr) alloys for refining.展开更多
The equilibrium constants between Sr-O,Ba-O and Sr-S,Ba-S in liquid iron at 1570℃ and the interaction coefficients concerning these elements have been determined as follows: K_(Sro)=1.897×10^(-7),e_O^(Sr)=-43.8 ...The equilibrium constants between Sr-O,Ba-O and Sr-S,Ba-S in liquid iron at 1570℃ and the interaction coefficients concerning these elements have been determined as follows: K_(Sro)=1.897×10^(-7),e_O^(Sr)=-43.8 K_(BaO)=8.204×10^(-8),e_O^(Ba)=-98.0 K_(SrS)=8.356×10^(-7),e_S^(Sr)=-3.9 K_(BaS)=4.083×10^(-7),e_S^(Ba)=-3.5展开更多
Under certain conditions, nonmetallic inclusions such as oxides, sulfides, nitrides and carbides are no longer harmful to steel service properties. With the new concept of oxide metallurgy, these properties can be im...Under certain conditions, nonmetallic inclusions such as oxides, sulfides, nitrides and carbides are no longer harmful to steel service properties. With the new concept of oxide metallurgy, these properties can be improved by generating fine oxide inclusions which serve as heterogeneous nuclei for sulfide and fine ferrite. A novel continuous casting (CC) process is expected to be created with the utilization of oxide metallurgy. This is also useful for the forthcoming technologies of direct rolling and near-net-shape casting. The main idea of oxide metallurgy consists of an alternative oxidation technology. It is based on steels treated by complex metals such as Ti, Zr, Ti-Zr alloys and rare earth metals. The selected deoxidants should follow the required conditions which are concluded in this paper. (Author abstract) 45 Refs.展开更多
As the market competition of steel mills is severe,deoxidization alloying is an important link in the metallurgical process.To solve this problem,principal component regression analysis is adopted to reduce the dimens...As the market competition of steel mills is severe,deoxidization alloying is an important link in the metallurgical process.To solve this problem,principal component regression analysis is adopted to reduce the dimension of influencing factors,and a reasonable and reliable prediction model of element yield is established.Based on the constraint conditions such as target cost function constraint,yield constraint and non-negative constraint,linear programming is adopted to design the lowest cost batting scheme that meets the national standards and production requirements.The research results provide a reliable optimization model for the deoxidization and alloying process of steel mills,which is of positive significance for improving the market competitiveness of steel mills,reducing waste discharge and protecting the environment.展开更多
The Ti-Ni-O ternary system was assessed by means of Calphad method using ternary experimental data in previous study.Isothermal sections at 1 173 and 1 273 K were calculated.The result shows that the present calculate...The Ti-Ni-O ternary system was assessed by means of Calphad method using ternary experimental data in previous study.Isothermal sections at 1 173 and 1 273 K were calculated.The result shows that the present calculated results are in good agreement with most of the experimental results.The consistent model parameter set determined in this work may provide theoretical guidance for the deoxidation of TiNi alloy.展开更多
基金National Natural Science Foundation of China (50174012)
文摘To confirm the effects of AlMnCa and AlMnFe alloys on the deoxidization and modification of Al2O3 inclusions, experiments of 4-heat low carbon and low silicon aluminum killed steels deoxidized by AlMnCa and AlMnFe alloys were done in a MoSi2 furnace at 1 873 K. It is found that the 1^# AlMnCa alloy has the best ability of deoxidization and modification of Al2O3 inclusions than 2^# AlMnCa and AlMnFe alloys. Steel A deoxidized by 1^# AlMnCa alloy has the lowest total oxygen content in the terminal steel, which is 37× 10^-6. Most of the inclusions in the steel deoxidized by 1^# AlMnCa alloy are spherical CaO-eontaining compound inclusions, and 89.1% of them are smatter than 10 μm. The diameter of the inclusion bigger than 50 μm is not found in the final steels deoxidized by AlMnCa alloys. Whereas, for the steels deoxidized by AlMnFe alloys, most inclusions in the terminal steel are Al2O3 or Al2O3-MnO inclusions, and a few of them are spherical, and only 76.8% of them are smaller than 10 μm. Some in- clusions bigger than 50μm are found in the steel D deoxidized by AlMnFe alloy.
文摘The influence of crucible and vacuum on oxygen content of CuCr25 prepared by vacuum induction melting (VIM) has been investigated. The experimental results show that the selection of crucible is very important. Alkaline oxide MgO crucible can result in increment of oxygen content and segregation of Cr in the CuCr25 alloys prepared. Neutral oxide Al 2O 3 crucible has no contribution to oxygen in CuCr25. The results also indicate that some kinds of deoxidant, such as Al, are further beneficial to deoxidization of the alloys. [
文摘Dissolved oxygen in the steel at the terminal of the converter smelting process is the main cause for the formation of oxide inclusions, and the high terminal oxygen content worsens the steel cleanness. However, post stirring in a combined blowing converter can promote the carbon-oxygen reaction in the liquid steel and reduce the dissolved oxygen content at the terminal of the converter smelting process. Thus, the mathematical model of deoxidization in the post stirring process was obtained, and the rationality of which was further verified by industrial tests. Finally, it is concluded that the product of dissolved carbon and oxygen, i.e. w[C]·w[O], decreases obviously after adopting the new technique of post stirring in the combined blowing converter.
文摘A new process is proposed to utilize refined ilmenite with high magnesia and calcia contents, which is the main secondary resource from vanadium-bearing titaniferous magnetite in Panzhihua, covering about 40% of the worlds titanium. The refined ilmenite was first deoxidized to separate the iron in the ore in order to enrich the titanium. The mechanism of chlorination of the titanium-rich slag was analyzed using the HSC chemistry software. Following deoxida-tion, a tandem fluidized bed was applied to chlorinating the titanium-rich slag. Modeling of the tandem fluidized bed ex-plains how this serial operation can effectively improve the convention ratio of TiO2 to TiCl4.
文摘The metal oxide dissolved in pure copper is usually cuprous oxide (Cu<sub>2</sub>O), so thedeoxidization of pure copper means the reduction of cuprous oxide to copper by addingdeoxidizers such as an element. It is required that the oxide of this element must be morestable than Cu<sub>2</sub>O, i.e. its decomposition pressure is less than that of Cu<sub>2</sub>O. The more
基金support from the National Natural Science Foundation of China (No. U1960202)the Opening Foundation from Shanghai Engineering Research Center of Hot Manufacturing, China (No. 18DZ2253400)。
文摘This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.
文摘The electrochemical reduction of nitrate(NO_(3)−)to ammonia(NH_(3))(NO3RR)represents an environmentally sustainable strategy for NH_(3)production while concurrently addressing water pollution challenges.Nevertheless,the intrinsic complexity of this multi-step reaction severely constrains both the selectivity and efficiency of NO3RR.Copper-based electrocatalysts have been extensively investigated for NO_(3)RR but often suffer from nitrite(NO_(2)^(−))accumulation,which stems from insufficient NO_(3)^(−)adsorption strength.This limitation often leads to rapid catalyst deactivation,hindered hydrogenation pathways,and reduced overall efficiency.Herein,we report a one-step green chemical reduction method to synthesize PtCuSnCo quarternary alloy nanoparticles with homogeneously distributed elements.Under practical NO3−concentrations,the optimized catalyst exhibited an impressive Faradaic efficiency approaching 100%and an outstanding selectivity of 95.6±2.9%.Mechanistic insights uncovered that SnCo sites robustly facilitated NO_(3)^(−)adsorption,complemented by the proficiency of PtCu sites in NO3−reduction.The synergistic spatial neighborhood effect between SnCo and PtCu sites efficiently stabilizes NO_(3)^(−)deoxygenation and suppresses NO_(2)^(−)accumulation.This tandem architecture achieves a finely tuned balance between adsorption strength and deoxygenation kinetics,enabling highly selective and efficient NO3RR.Our findings emphasize the indispensable role of engineered multi-metallic catalysts in overcoming persistent challenges of NO3RR,paving the way for advanced NH3 synthesis and environmental remediation.
基金supported by the National Natural Science Foundation of China,Pilot Group Program of the Research Fund for International Senior Scientists(22250710676)National Natural Science Foundation of China(22078064,22378062,22304028)+1 种基金Natural Science Foundation of Fujian Province(2021J02009)Tianjin University-Fuzhou University Independent Innovation Fund Cooperation Project(TF2023-1,TF2023-8).
文摘In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixtures with diverse oxygen-containing functional groups,pose a challenge as they cannot be easily separated via distillation for direct utilization.A promising solution to this challenge lies in the efficient removal of oxygen-containing functional groups from LDOs through hydrodeoxygenation(HDO),aiming to yield biomass products with singular components.However,the high dissociation energy of the carbon-oxygen bond,coupled with its similarity to the hydrogenation energy of the benzene ring,creates a competition between deoxygenation and benzene ring hydrogenation.Considering hydrogen consumption and lignin properties,the preference is directed towards generating aromatic hydrocarbons rather than saturated components.Thus,the goal is to selectively remove oxygen-containing functional groups while preserving the benzene ring structure.Studies on LDOs conversion have indicated that the design of active components and optimization of reaction conditions play pivotal roles in achieving selective deoxygenation,but a summary of the correlation between these factors and the reaction mechanism is lacking.This review addresses this gap in knowledge by firstly summarizing the various reaction pathways for HDO of LDOs.It explores the impact of catalyst design strategies,including morphology modulation,elemental doping,and surface modification,on the adsorption-desorption dynamics between reactants and catalysts.Secondly,we delve into the application of advanced techniques such as spectroscopic techniques and computational modeling,aiding in uncovering the true active sites in HDO reactions and understanding the interaction of reactive reactants with catalyst surface-interfaces.Additionally,fundamental insights into selective deoxygenation obtained through these techniques are highlighted.Finally,we outline the challenges that lie ahead in the design of highly active and selective HDO catalysts.These challenges include the development of detection tools for reactive species with high activity at low concentrations,the study of reaction medium-catalyst interactions,and the development of theoretical models that more closely approximate real reaction situations.Addressing these challenges will pave the way for the development of efficient and selective HDO catalysts,thus advancing the field of renewable LDOs conversion.
基金supported by the National Natural Science Foundation of China(No.U21A20113)the Natural Science Foundation of Hubei Province of China(No.2021CFA023).
文摘A low-carbon,low-cost,and high-efficient method was reported for remarkably improving corrosion resistance of C–Mn structural steel by weak deoxidation.The results showed that,with the total oxygen content(wOT)increasing in the tested steel from 41×10^(−6)to 195×10^(−6),both the degree of element segregation and the level of banded microstructure weakened,presenting the lower potential difference between pearlite(P)and ferrite(F),and then smaller galvanic corrosion driving force,and thus effectively improving general corrosion properties.In addition,with wOT growing up,the number and size of inclusions increased,and the shape also changed from long chain or small particle to large particle ball with typical mosaic structure,which could effectively inhibit the preferential dissolution of local component due to multiple complex interfaces,and correspondingly suppress the pitting susceptibility.However,the impact toughness at low temperature of the tested steel reduced with wOT increasing,and then,taking the mechanical properties and corrosion resistance all into account,160×10^(−6) was the optimal oxygen content within the present scope.
基金the financial support from the Anhui Key Laboratory of Low Carbon Metallurgy and Solid Waste Resource Utilization(Anhui University of Technology)(No.SKF23-01)Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,Wuhan University of Science and Technology(No.FMRUlab23-1010)+1 种基金Open Project of State Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2022-07)the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200).
文摘The effect of the initial(Al+Si)/MnO molar ratio and slag composition on MnO recovery from electroslag by remelting at 1773 K was investigated.High-purity aluminum metal and silicon were employed as the deoxidizers to effectively promote the recovery of manganese metal(MM).The reduction of MnO in slag,through the interaction between molten MM with a deoxidizer and the Na_(2)O-enriched electroslag melt,was assessed both thermodynamically and kinetically.The sulfur content of high-sulfur rejected electrolytic manganese metal(EMM)scrap decreased to 0.58%with high-temperature pretreatment.The mass ratio between slag and high-sulfur rejected EMM scrap is 2/3.When the Al_(2)O_(3)content in the initial slags decreased and the Na_(2)O content increased,the MnO reduction ratio increased.The residual MnO concentration of the slag reduced with increasing the Al–Si deoxidizer content.When the(Al+Si)/MnO molar ratio reached 0.83,the MnO concentration in the final slag was only 3%.A deoxidizer mainly containing aluminum and a small amount of Si could be added to recover MnO from the slag,resulting in the improvement in the cleanliness of final Mn metal.
基金Item Sponsored by National Basic Research Program of China(2010CB630806)
文摘The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was added to experimental heats for final deoxidizing during BOF tapping, and the refining top slag with strong reducibility, high basicity and high Al2O3 in ladle furnace was used to produce ultra-low oxygen steel and the transformation of nonmetallic inclusions in molten steel was compared by calcium treatment and no calcium treatment. The results show that the transformation of Al2O3--MgO - Al2O3 spinel-CaO-MgO-Al2O3 complex inclusions has been completed for aluminum deoxidation products and calcium treatment to molten steel is unnecessary when using the control technology of ladle furnace refining top slag to produce ultra-low oxygen steel, and the complex inclusions are liquid at the temperature of steelmaking and easily removable to obtain very high cleanliness steel by flotation. Further- more, the problems of nozzle clogging in casting operations do not happen and the remaining oxide inclusions in steel are the relatively lower melting point complex inclusions.
文摘Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The pit propagation rate was evaluated in artificial sea water and 3wt% sea salt solution by simulating occluded corrosion cell (SOCC) test and hanging plate test, respectively. The composition of inclusions and corrosive feature were studied by scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and optical microscopy (OM). The results indicate that sulfide inclusions in steel are the sites for pit nucleation. The sulphide inclusions vary in shape from short spindle-like to long strip-like with increasing deoxidizing degree. Under the same conditions, the lower the deoxidizing degree gets, the lower the pitting initiation susceptibility becomes, and the stronger the resistance to pit propagation exhibits. For steels with different deoxidizing degrees, their pitting initiation susceptibility is mainly influenced by thermodynamic stability, while the pit propagation rate is primarily subject to the characteristics of inclusions in steel.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (No. U1460103). Support was also provided by the Instrumental Analysis & Research Center in Shanghai University.
文摘In order to reduce the negative effect of gross Al-rich inclusions on high aluminum steel, both thermodynamic calculations and designed deoxidization experiments were performed in condition of different silicon and aluminum deoxidization sequences. Thermodynamic calculations demonstrated that the complex inclusions with low melting point (harmless inclusions) are more favorable to be formed in condition that the melt was deoxidized using ferrosilicon first and then pure aluminum (Si/A1 deoxidization) than that deoxidized using pure aluminum first and then ferrosilicon (AI/Si deoxidization). Al-rich inclusion decreases 83% from A1/Si deoxidization to Si/A1 deoxidization. The experimental results showed that the total quantity of inclusions decreases by 24% and the proportion of harmless inclusions is doubled when comparing Si/Al deoxidization with Al/Si deoxidization. The morphology of complex inclusion tends to be spherical, and the mean size is less than 5μm in condition of Si/Al deoxidization. The formation mechanism of harmless inclusions was discussed, and it is believed that the inclusions can be controlled reasonably in high aluminum steel using Si/Al deoxidization.
基金The authors appreciate the financial support from the National Natural Science Foundation of China(Grant No.51804227).
文摘The recycling rate of rejected electrolytic manganese metal(EMM)scrap can be increased by inhibiting the manganese metal(MM)vaporization during the remelting process with electroslag.However,if the latter is achieved by reducing the remelting temperature,the desulfurization behavior will deteriorate.Therefore,Na_(2)O-containing electroslag and metallic additive were used to increase the rejected EMM scrap recovery ratio.The respective high-temperature experiment was conducted in a MoSi_(2) electrical resistance furnace filled with fluid argon at 1673 K using five different types of electroslag with the Na_(2)O content ranging from 5.81%to 15.71%.High-purity metallic magnesium and magnesium calcium alloy additives were used as deoxidizers.The addition of Na_(2)O and metallic additives effectively promoted the desulfurization and deoxidization of MM.The removal of sulfur and oxygen by the interaction between Na_(2)O-containing electroslag melt and molten MM with metallic additive was analyzed from the thermodynamic and kinetic standpoints.The effect of Na_(2)O-containing electroslag volatilization on desulfurization and deoxidization was considered.With an increase in Na_(2)O content in the slag,the mass loss rates of Na_(2)O and electroslag rose,as well as the final sulfur partition ratio.If the Na_(2)O content volatilized in the slag melt did not exceed 10.44%,the sulfur removal ratio was increased by high sulfide capacity and CaO activity in all slags due to the addition of Na_(2)O.The rejected EMM scrap deoxidization ratio grew with the increased activity of CaO and reduced activity of Al_(2)O_(3) in the molten slag,caused by the increased Na_(2)O content in the molten slag.The addition of metallic Mg and Mg-Ca alloy indirectly promoted desulfurization and deoxidization by reducing the MnO content in the rejected EMM scrap and growing slag oxidability.The Mg-Ca alloy could also react with dissolved sulfur and oxygen,directly promoting desulfurization and deoxidization processes.The Na_(2)O content in slag should not exceed 10.44%to ensure the high desulfurization and deoxidization abilities,fluidity and low volatilization of slag.
文摘Multifunctional composite catalyst for carbonyl sulfide hydrolysis under moderate temperature was prepared by impregnation method. The hydrolysis and deoxidization ability of the prepared catalyst was investigated in a fixed bed reactor. It was found that deoxidization ability of the prepared catalyst was raised by the increase of the content of potassium loading catalyst and reaction temperature. And the concentration of H2S had no effect on deoxidization while COS improved the deoxidization ratio. And deoxidization rates were nearly scaled up with concentration of H2. The hydrolysis ability was decreased by the decrease of the surface basicity.
文摘The design, selection and application principles of complex alloys according to the requirements of making low-alloy steels are discussed. The designed complex alloys containing calcium, barium, magnesium, strontium, rare earth elements, etc. should not only be able to deoxidize, desulphurize and refine liquid steel, but also alloy it. The application principles of alloys are as follows: using Si-Mn or Si-Mn-Al alloys for pre-deoxidizing, Si-Al-Ba or Si-Al-Ca-Ba alloys for final deoxidizing and Si-Ca-Ba-Mg(Sr) alloys for refining.
文摘The equilibrium constants between Sr-O,Ba-O and Sr-S,Ba-S in liquid iron at 1570℃ and the interaction coefficients concerning these elements have been determined as follows: K_(Sro)=1.897×10^(-7),e_O^(Sr)=-43.8 K_(BaO)=8.204×10^(-8),e_O^(Ba)=-98.0 K_(SrS)=8.356×10^(-7),e_S^(Sr)=-3.9 K_(BaS)=4.083×10^(-7),e_S^(Ba)=-3.5
文摘Under certain conditions, nonmetallic inclusions such as oxides, sulfides, nitrides and carbides are no longer harmful to steel service properties. With the new concept of oxide metallurgy, these properties can be improved by generating fine oxide inclusions which serve as heterogeneous nuclei for sulfide and fine ferrite. A novel continuous casting (CC) process is expected to be created with the utilization of oxide metallurgy. This is also useful for the forthcoming technologies of direct rolling and near-net-shape casting. The main idea of oxide metallurgy consists of an alternative oxidation technology. It is based on steels treated by complex metals such as Ti, Zr, Ti-Zr alloys and rare earth metals. The selected deoxidants should follow the required conditions which are concluded in this paper. (Author abstract) 45 Refs.
文摘As the market competition of steel mills is severe,deoxidization alloying is an important link in the metallurgical process.To solve this problem,principal component regression analysis is adopted to reduce the dimension of influencing factors,and a reasonable and reliable prediction model of element yield is established.Based on the constraint conditions such as target cost function constraint,yield constraint and non-negative constraint,linear programming is adopted to design the lowest cost batting scheme that meets the national standards and production requirements.The research results provide a reliable optimization model for the deoxidization and alloying process of steel mills,which is of positive significance for improving the market competitiveness of steel mills,reducing waste discharge and protecting the environment.
基金Project (10520706400) supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject (2007CB613606) supported by the National Basic Research Program of ChinaProjects (50774052,51074105) supported by the National Natural Science Foundation of China
文摘The Ti-Ni-O ternary system was assessed by means of Calphad method using ternary experimental data in previous study.Isothermal sections at 1 173 and 1 273 K were calculated.The result shows that the present calculated results are in good agreement with most of the experimental results.The consistent model parameter set determined in this work may provide theoretical guidance for the deoxidation of TiNi alloy.