期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Association of DNA methylation/demethylation with the functional outcome of stroke in a hyperinflammatory state 被引量:2
1
作者 Yubo Wang Ling Zhang +6 位作者 Tianjie Lyu Lu Cui Shunying Zhao Xuechun Wang Meng Wang Yongjun Wang Zixiao Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2229-2239,共11页
Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec... Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke. 展开更多
关键词 DNA demethylation DNA methylation DNMT3A functional outcome hyperinflammatory state INTERLEUKIN NEUROINFLAMMATION STROKE TET2
暂未订购
Punicalagin prevents obesity-related cardiac dysfunction through promoting DNA demethylation in mice
2
作者 Shengjie Pei Run Liu +10 位作者 Qingqing Ma Peng Jiang Xin He Zhongshi Qi Jiacheng Fang Xu Yang Zirui Yao Xiaoqian Liu Xianfeng Jing Lei Chen Duo Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1465-1474,共10页
The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with stand... The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with standard diet,high-fat diet(HFD),HFD supplemented with resveratrol,low-dose PU(LPU)and high-dose PU(HPU)for 8 weeks.Compared with HFD group,body weight was significantly lower in PU treatment groups,number of cardionwocytes and the protein level of myosin heavy chain 7B were significantly higher in PU treatment groups.Levels of 5-hydroxymethylcytosine and 5-formylcytosine were significantly lower in HFD group than in other groups.Compared with the HFD group,the protein level of ten-eleven translocation enzyme(TET)2 was significantly higher in PU treatment groups,p-AMP-activated protein kinase(AMPK)was significantly higher in LPU group.Levels of total antioxidant capacity and the protein levels of complexesⅡ/Ⅲ/Ⅴ,oxoglutarate dehydrogenase,succinate dehydrogenase B and fumarate hdrolase were significantly lower in HFD group than PU treatment group.The ratio of(succinic acid+fumaric acid)/a-ketoglutarate was significantly higher in HFD group than other groups.In conclusion,PU up-regulated TETs enzyme activities and TET2 protein stability through alleviating mitochondrial dysfunction and activating AMPK,so as to promote DNA demethylation,thus preventing obesity-related cardiac dysfunction. 展开更多
关键词 DNA demethylation Mitochondrial function Obesity-related cardiac dysfunction PUNICALAGIN Ten-eleven translocation family enzymes
暂未订购
Observation on the Clinical Effect of Applying Venetoclax Combined with Demethylation Drug Therapy in Patients with Acute Myeloid Leukemia
3
作者 Ben Niu Limin Hou 《Journal of Clinical and Nursing Research》 2024年第4期248-252,共5页
Objective: To investigate the therapeutic effect of applying venetoclax combined with demethylating drugs in treating patients with acute myeloid leukemia (AML). Methods: Eighty cases of AML patients treated with vene... Objective: To investigate the therapeutic effect of applying venetoclax combined with demethylating drugs in treating patients with acute myeloid leukemia (AML). Methods: Eighty cases of AML patients treated with venetoclax combined with demethylating drugs in our hospital were selected from March 2021 to March 2024, including 40 cases of primary treatment patients and 40 cases of relapsed and refractory patients. The efficacy and safety of the combined drug therapy was analyzed. Results: The primary treatment group was presented with a complete remission (CR) rate of 40.5%, partial remission (PR) rate of 47.50%, no response (NR) rate of 12.50%, and a remission rate of 87.50%. The relapsed- refractory group was presented with a CR rate of 37.50%, PR rate of 42.50%, NR rate of 17.50%, and a remission rate of 87.50%. There was no statistical significance between the groups (P > 0.05). The hematological adverse reactions of the combined treatment for AML were leukopenia and the non-hematological adverse reactions were mainly infections, with an incidence rate of 87.50%. Conclusion: The efficacy of venetoclax combined with demethylating drugs in AML was remarkable and the treatment regimen can be adjusted according to the treatment-resistant response. 展开更多
关键词 Acute myeloid leukemia Venetoclax Demethylating drugs Combination therapy EFFICACY
暂未订购
Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging 被引量:5
4
作者 Shu Wei Hai-Rong Hua +5 位作者 Qian-Quan Chen Ying Zhang Fei Chen Shu-Qing Li Fan Li Jia-Li Li 《Zoological Research》 CAS CSCD 2017年第2期96-102,共7页
Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5- hydroxymethylcytosine (5hm... Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5- hydroxymethylcytosine (5hmC) ten-eleven transtocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews (Tupaia belangeri chinensis). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes. 展开更多
关键词 Tree shrew DNA demethylation 5-hydroxymethylcytosine Brain development and aging
暂未订购
Impact of GFRA1 gene reactivation by DNA demethylation on prognosis of patients with metastatic colon cancer 被引量:4
5
作者 Wan-Ru Ma Peng Xu +4 位作者 Zhao-Jun Liu Jing Zhou Lian-Kun Gu Jun Zhang Da-Jun Deng 《World Journal of Gastroenterology》 SCIE CAS 2020年第2期184-198,共15页
BACKGROUND The expression of the membrane receptor protein GFRA1 is frequently upregulated in many cancers,which can promote cancer development by activating the classic RET-RAS-ERK and RET-RAS-PI3K-AKT pathways.Sever... BACKGROUND The expression of the membrane receptor protein GFRA1 is frequently upregulated in many cancers,which can promote cancer development by activating the classic RET-RAS-ERK and RET-RAS-PI3K-AKT pathways.Several therapeutic anti-GFRA1 antibody-drug conjugates are under development.Demethylation(or hypomethylation)of GFRA1 CpG islands(dmGFRA1)is associated with increased gene expression and metastasis risk of gastric cancer.However,it is unknown whether dmGFRA1 affects the metastasis of other cancers,including colon cancer(CC).AIM To study whether dmGFRA1 is a driver for CC metastasis and GFRA1 is a potential therapeutic target.METHODS CC and paired surgical margin tissue samples from 144 inpatients and normal colon mucosal biopsies from 21 noncancer patients were included in this study.The methylation status of GFRA1 islands was determined by MethyLight and denaturing high-performance liquid chromatography and bisulfite-sequencing.Kaplan-Meier analysis was used to explore the effect of dmGFRA1 on the survival of CC patients.Impacts of GFRA1 on CC cell proliferation and migration were evaluated by a battery of biological assays in vitro and in vivo.The phosphorylation of AKT and ERK proteins was examined by Western blot analysis.RESULTS The proportion of dmGFRA1 in CC,surgical margin,and normal colon tissues by MethyLight was 68.4%,73.4%,and 35.9%(median;nonparametric test,P=0.001 and<0.001),respectively.Using the median value of dmGFRA1 peak area proportion as the cutoff,the proportion of dmGFRA1-high samples was much higher in poorly differentiated CC samples than in moderately or welldifferentiated samples(92.3%%vs 55.8%,Chi-square test,P=0.002)and significantly higher in CC samples with distant metastasis than in samples without(77.8%vs 46.0%,P=0.021).The overall survival of patients with dmGFRA1-low CC was significantly longer than that of patients with dmGFRA1-high CC(adjusted hazard ratio=0.49,95%confidence interval:0.24-0.98),especially for 89 CC patients with metastatic CC(adjusted hazard ratio=0.41,95%confidence interval:0.18-0.91).These data were confirmed by the mining results from TCGA datasets.Furthermore,GFRA1 overexpression significantly promoted the proliferation/invasion of RKO and HCT116 cells and the growth of RKO cells in nude mice but did not affect their migration.GFRA1 overexpression markedly increased the phosphorylation levels of AKT and ERK proteins,two key molecules in two classic GFRA1 downstream pathways.CONCLUSION GFRA1 expression is frequently reactivated by DNA demethylation in CC tissues and is significantly associated with a poor prognosis in patients with CC,especially those with metastatic CC.GFRA1 can promote the proliferation/growth of CC cells,probably by the activation of AKT and ERK pathways.GFRA1 might be a therapeutic target for CC patients,especially those with metastatic potential. 展开更多
关键词 GFRA1 demethylation CpG island Colon cancer METASTASIS Membrane receptor
暂未订购
DNA methylation and demethylation link the properties of mesenchymal stem cells: Regeneration and immunomodulation 被引量:3
6
作者 Tian-Yi Xin Ting-Ting Yu Rui-Li Yang 《World Journal of Stem Cells》 SCIE CAS 2020年第5期351-358,共8页
Mesenchymal stem cells(MSCs)are a heterogeneous population that can be isolated from various tissues,including bone marrow,adipose tissue,umbilical cord blood,and craniofacial tissue.MSCs have attracted increasingly m... Mesenchymal stem cells(MSCs)are a heterogeneous population that can be isolated from various tissues,including bone marrow,adipose tissue,umbilical cord blood,and craniofacial tissue.MSCs have attracted increasingly more attention over the years due to their regenerative capacity and function in immunomodulation.The foundation of tissue regeneration is the potential of cells to differentiate into multiple cell lineages and give rise to multiple tissue types.In addition,the immunoregulatory function of MSCs has provided insights into therapeutic treatments for immune-mediated diseases.DNA methylation and demethylation are important epigenetic mechanisms that have been shown to modulate embryonic stem cell maintenance,proliferation,differentiation and apoptosis by activating or suppressing a number of genes.In most studies,DNA hypermethylation is associated with gene suppression,while hypomethylation or demethylation is associated with gene activation.The dynamic balance of DNA methylation and demethylation is required for normal mammalian development and inhibits the onset of abnormal phenotypes.However,the exact role of DNA methylation and demethylation in MSC-based tissue regeneration and immunomodulation requires further investigation.In this review,we discuss how DNA methylation and demethylation function in multi-lineage cell differentiation and immunomodulation of MSCs based on previously published work.Furthermore,we discuss the implications of the role of DNA methylation and demethylation in MSCs for the treatment of metabolic or immune-related diseases. 展开更多
关键词 Mesenchymal stem cells DNA methylation and demethylation Multi-lineage differentiation REGENERATION IMMUNOMODULATION Immune disease
暂未订购
Mechanoresponsive Gene Upregulation by Force Depends on H3K9Demethylation
7
作者 Junwei Chen Jian Sun +1 位作者 Erfan Mohagheghian Ning Wang 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期164-164,共1页
All living cells in a human body are made of the same DNA molecule but cells in different tissues express different genes and proteins.How the transcription process is controlled and regulated is largely unknown.Speci... All living cells in a human body are made of the same DNA molecule but cells in different tissues express different genes and proteins.How the transcription process is controlled and regulated is largely unknown.Specifically,mechanical forces are increasingly recognized to play critical roles in cell and tissue functions.However,what controls force-induced gene transcription is elusive.Recently we have reported that a local surface force transfers from integrins to the cytoskeleton and the link of nucleoskeleton and the cytoskeleton(LINC)into the nucleus and deforms chromatin directly to induce rapid activation of transgene DHFR.Here we show that endogenous mechanoresponsive genes egr-1 and Cav1 are rapidly upregulated and their upregulation depends on stress angles relative to the cell long axis,suggesting direct impact of these genes by force.Demethylation of histone 3 at lysine 9(H3K9)trimethylation(H3K9me3)at nuclear interiors(euchromatin)is necessary for force-induced transcription upregulation.Our findings suggest that force-rapid upregulation of mechanoresponsive genes by force depends on H3K9me3 demethylation. 展开更多
关键词 GENE UPREGULATION FORCE Depends H3K9 demethylation
原文传递
Active DNA demethylation regulates MAMP-triggered immune priming in Arabidopsis
8
作者 Mengling Huang Ying Zhang +6 位作者 Ying Wang Jiatao Xie Jiasen Cheng Yanping Fu Daohong Jiang Xiao Yu Bo Li 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2022年第8期796-809,共14页
Plants recognize microbe-associated molecular patterns(MAMPs)to activate immune responses and defense priming to defend against pathogen infections.Transcriptional regulation of gene expression is crucial for plant im... Plants recognize microbe-associated molecular patterns(MAMPs)to activate immune responses and defense priming to defend against pathogen infections.Transcriptional regulation of gene expression is crucial for plant immunity and is mediated by multiple factors,including DNA methylation.However,it remains unknown whether and how DNA demethylation contributes to immune responses in MAMPtriggered immunity.Here,we report that active DNA demethylation is required for MAMP-triggered immunity to bacterial pathogens.The rdd-2 triple mutant carrying mutations in ROS1,DML2,and DML3 that encode DNA glycosylases,which are key DNA demethylation enzymes,exhibits compromised immune responses triggered by the MAMPs fig22 and elf18.Genome-wide methylome analysis reveals that fig22 induces rapid and specific DNA demethylation in an RDD-dependent manner.The expression levels of salicylic acid signaling-related and phytoalexin biosynthesis-related genes are tightly associated with the fig22-induced promoter demethylation.The compromised accumulation of priming compounds and antimicrobial metabolites ultimately leads to a defense priming defect in the rdd-2 mutant.Our results reveal the critical role of active DNA demethylation in the MAMP-triggered immune response and provide unique insight into the molecular mechanism of fig22-modulated DNA demethylation. 展开更多
关键词 Pattern-triggered immunity Immune priming Defense gene expression DNA demethylation Immune signal transduction
原文传递
Cornel iridoid glycoside inhibits PP2Ac demethylation by regulationg PME-1
9
作者 YANG Cui-cui KUAI Xue-xian +3 位作者 LI Ya-li ZHANG Li LI Lin ZHANG Lan 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第9期656-656,共1页
OBJECTIVE PP2Ac demethyl⁃ation is regulated by LCMT(a specific leucine carboxyl methyltransferase catalyzing methyla⁃tion of PP2A)and PME(a specific methylester⁃ase catalyzing demethylation of PP2A.This study was to i... OBJECTIVE PP2Ac demethyl⁃ation is regulated by LCMT(a specific leucine carboxyl methyltransferase catalyzing methyla⁃tion of PP2A)and PME(a specific methylester⁃ase catalyzing demethylation of PP2A.This study was to investigate the mechanism of Cor⁃nel iridoid glycoside(CIG)on PP2A catalytic sub⁃unit C(PP2Ac).METHODS Recombined lentivi⁃rus vector was used to deliver PME-1 genetic materials into N2a cells or transfected LCMT-1 siRNA into N2a cells to block the expression of LCMT-1.Twenty-four hours later,cells were rinsed twice with cold PBS(pH 7.4)and CIG at different concentrations(50,100 and 200 g·L^(-1),respectively)were added for 24 h.Western blotting was used to PP2Ac,demethylaion/methylation PP2Ac,LCMT-1 and PME-1.The ac⁃tivity of PP2A was detected by a biochemical as⁃say.RESULTS①Lentivirus transferred PME-1 was expressed at high level in the N2a cells after transduction.Correspondingly,the demethylation of PP2Ac was increasing and PP2A activity was decreasing after transduction.Treatment with CIG for 24 h reversed the increase of PME-1 and demethylation of PP2Ac without influencing LCMT-1 expression.PP2A activity was also sig⁃nificantly enhanced in CIG treatment group,compared with the cells after PME-1 transduc⁃tion.②LCMT-1 siRNA significantly decreased LCMT-1 expression.CIG did not affect LCMT-1expression.however,demethylation of PP2Ac is increased in siRNA-transfected cells and CIG could reversed the high demethylation of PP2Ac and PP2A activity.CONLUSION CIG increases methylation of PP2A subunit C by inhibiting PME-1. 展开更多
关键词 cornel iridoid glycoside Alzheimer disease PP2A catalytic subunit C demethylation
暂未订购
Demethylation of FANCF gene may be a potential treatment through inhibiting the proliferation of cervical cancer
10
作者 Min Li Chanyu Zhang 《The Chinese-German Journal of Clinical Oncology》 CAS 2013年第7期339-342,共4页
Objective: The aim of the study was to explore the effect of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) on expression of Fanconi anemia complementation group F (FANCF) gene and the proliferation of cervica... Objective: The aim of the study was to explore the effect of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) on expression of Fanconi anemia complementation group F (FANCF) gene and the proliferation of cervical cancer cells, to observe cell's sensitivity to chemotherapeutic drug taxol, and to explore the antitumor effect of 5-ADC as well as the new treatment of cervical cancer. Methods: Cervical cancer cell lines SiHa (FANCF gene full-methylated) and Hela (unmethylated) were treated with 5-ADC. We used the methylation-specific PCR (MSP), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot to detect the FANCF methylation, mRNA and protein respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the proliferation of cells. The cytotoxicity of taxol was measured by flow cytometer. The nude mice bearing SiHa was used to observe the effect of 5-ADC in vivo. Results: Inhibition of DNA promoter methylation by 5-ADC reactivated the expression of FANCF mRNA and protein in SiHa cells, consistent with decreased growth speed and increased taxol resistance. These results were proven in experiments in vivo. Conclusion: The 5-ADC probably become a potential treatment drug through inhibiting the proliferation of cervical cancer cells in taxol-resistant patients. 展开更多
关键词 Fanconi anemia complementation group F (FANCF) cervical cancer 5-Aza-2'-deoxycytidine (5-ADC) methyla-tion demethylation
暂未订购
Recent Advances in Deciphering the Mechanisms and Biological Functions of DNA Demethylation 被引量:1
11
作者 Yang Feng Sheng-Jun Chen Bi-Feng Yuan 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第6期645-651,共7页
5-Methylcytosine (5mC) is a dynamic and reversible epigenetic modification in genomic DNA of higher eukaryotes.It has been well-established that the demethylation of 5mC occurs through the ten-eleven translocation (TE... 5-Methylcytosine (5mC) is a dynamic and reversible epigenetic modification in genomic DNA of higher eukaryotes.It has been well-established that the demethylation of 5mC occurs through the ten-eleven translocation (TET)-mediated oxidation of 5mC followed by thymine DNA glycosylase (TDG)-initiated base excision repair (BER).Recent findings also have identified an alternative pathway of DNA demethylation.In this pathway,TET enzymes directly oxidize 5mC to form 5-formylcytosine (5fC) or 5-carboxylcytosine (5caC).These modified bases can undergo direct deformylation or decarboxylation,respectively.Additionally,DNA demethylation can also occur through the deamination of 5mC and 5hmC,resulting in the production of thymine and 5-hydroxymethyluracil (5hmU),respectively.Various DNA demethylation pathways possess critical functional implications and roles in biological processes.This Recent Advances article will focus on the studies of mechanisms and biological functions of DNA demethylation,shedding light on the reversible nature of the epigenetic modification of 5mC. 展开更多
关键词 EPIGENETICS DNA DNA methylation 5-Methylcytosine demethylation MECHANISMS Biological functions C—C bond cleavage Mass spectrometry
原文传递
L-Theanine/α-ketoglutarate/Nrf2 axis promotes exercise-mediated amelioration of nonalcoholic steatohepatitis in mice
12
作者 Wangjing Mu Min Chen +6 位作者 Jieying Zhu Hongyang Luo Yang Li Shan Li Linjing Yan Ruoying Li Liang Guo 《Food Science and Human Wellness》 2025年第10期4047-4061,共15页
L-Theanine(LTA)is a non-protein amino acid mainly found in tea plants with many beneficial effects.Exercise exerts a wide range of benefits in metabolic health.Here,we show that exercise or gastric lavage intervention... L-Theanine(LTA)is a non-protein amino acid mainly found in tea plants with many beneficial effects.Exercise exerts a wide range of benefits in metabolic health.Here,we show that exercise or gastric lavage intervention on mice with LTA improves diet-induced nonalcoholic steatohepatitis(NASH)in mice.Meanwhile,combinatory therapy shows that exercise and LTA synergistically improve obesity-related metabolic disorders and NASH phenotypes,including hepatic steatosis,inflammation,cell death and oxidative stress.In vivo studies indicate that LTA inhibits free fatty acid(FFA)-induced hepatocyte injury,including steatosis,oxidative stress and apoptosis.Knockdown of Nrf2 blunts the role of LTA in inhibiting FFA-induced hepatocyte oxidative stress and dysfunction.Mechanistically,LTA increases theα-ketoglutarate(α-KG)level in hepatocytes,which increases the transcription of Nrf2 by inducing active DNA demethylation on its promoter.Moreover,LTA promote the aboveα-KG/Nrf2 axis in synergy with exercise,thereby more efficiently inhibiting hepatic oxidative stress and ameliorating diet-induced NASH in mice.Our results suggest that,through promoting theα-KG/Nrf2 axis-mediated anti-oxidative pathway,the combination of LTA and exercise may provide an effective measure for the prevention and control of NASH. 展开更多
关键词 DNA demethylation EXERCISE L-THEANINE Nonalcoholic steatohepatitis NRF2
暂未订购
KDM2A and KDM2B protect a subset of CpG islands from DNA methylation
13
作者 Yuan Liu Ying Liu +7 位作者 Yunji Zhu Di Hu Hu Nie Yali Xie Rongrong Sun Jin He Honglian Zhang Falong Lu 《Journal of Genetics and Genomics》 2025年第1期39-50,共12页
In the mammalian genome,most CpGs are methylated.However,CpGs within the CpG islands(CGIs)are largely unmethylated,which are important for gene expression regulation.The mechanism underlying the low methylation levels... In the mammalian genome,most CpGs are methylated.However,CpGs within the CpG islands(CGIs)are largely unmethylated,which are important for gene expression regulation.The mechanism underlying the low methylation levels at CGIs remains largely elusive.KDM2 proteins(KDM2A and KDM2B)are H3K36me2 demethylases known to bind specifically at CGIs.Here,we report that depletion of each or both KDM2 proteins,or mutation of all their JmjC domains that harbor the H3K36me2 demethylation activity,leads to an increase in DNA methylation at selective CGIs.The Kdm2a/2b double knockout shows a stronger increase in DNA methylation compared with the single mutant of Kdm2a or Kdm2b,indicating that KDM2A and KDM2B redundantly regulate DNA methylation at CGIs.In addition,the increase of CGI DNA methylation upon mutations of KDM2 proteins is associated with the chromatin environment.Our findings reveal that KDM2A and KDM2B function redundantly in regulating DNA methylation at a subset of CGIs in an H3K36me2 demethylation-dependent manner. 展开更多
关键词 KDM2A KDM2B CpG island DNA methylation H3K36me2 demethylation Embryonic stem cell
原文传递
A gene island from plasmid pkk5 of Burkholderia sp.KK1 confers arsenic resistance to Caballeronia jiangsuensis
14
作者 Lijie Huang Yuhan Yang +4 位作者 Yingxin Xue Shilin Hu Tian Liang Jun Ye Ximei Xue 《Journal of Environmental Sciences》 2025年第9期562-572,共11页
Microorganisms play a critical role in the biotransformation of arsenic and the form which it exists in the environment. In this study, a methyl parathion-degrading bacterium Caballeronia jiangsuensis, isolated from a... Microorganisms play a critical role in the biotransformation of arsenic and the form which it exists in the environment. In this study, a methyl parathion-degrading bacterium Caballeronia jiangsuensis, isolated from an abandoned pesticide manufacturing plant, was used to analyze arsenic accumulation and transformation. The accumulation of trivalent organoarsenic compounds in C. jiangsuensis occurred to a greater extent than that of their pentavalent counterparts. The chromosome of C. jiangsuensis contains an arsenic gene island whose GC content is significantly lower than that of the genome, suggesting that the island was acquired via horizontal gene transfer. There was approximately 90%-99% similarity between the proteins encoded by the gene island and the corresponding sequence of the plasmid pkk5 from Burkholderia sp. KK1. The biotransformation of different arsenic species by C. jiangsuensis was subsequently analyzed. The results revealed that monomethylarsenic acid(MAs(Ⅴ)) was rapidly demethylated to arsenate with very small amounts of intermediate monomethylarsonous acid(MAs(Ⅲ)), whereas MAs(Ⅲ) was largely oxidized to MAs(Ⅴ) despite the occurrence of the gene arsI probably responsible for aerobic demethylation of MAs(Ⅲ) in C. jiangsuensis. In addition, dimethylarsenic acid was partly demethylated to arsenate. Horizontal gene transfer of ars operon from a plasmid to other bacteria represents an adaptation to a specific environment. This study provides a new perspective for understanding arsenic biogeochemical cycling. 展开更多
关键词 Caballeronia jiangsuensis Arsenic biotransformation demethylation Horizontal gene transfer
原文传递
Carbon black induced pulmonary fibrosis through piR-713551/PIWIL4 targeting THBS2 signal pathway
15
作者 Mengruo Wang Yong Niu +11 位作者 Qingping Liu Peihao Yang Mengqi Wu Ruiting Wu Beibei Shi Jiawei Chen Jingyuan Wang Zhe Du Yaxian Pang Lei Bao Yujie Niu Rong Zhang 《Journal of Environmental Sciences》 2025年第9期409-422,共14页
Carbon black(CB)is a vital constituent of airborne pollutants,comprising diesel exhaust and fine particulate matter(PM_(2.5)),aswell as a prevalent manufacturingmaterial.CBwas known to cause pulmonary dysfunction and ... Carbon black(CB)is a vital constituent of airborne pollutants,comprising diesel exhaust and fine particulate matter(PM_(2.5)),aswell as a prevalent manufacturingmaterial.CBwas known to cause pulmonary dysfunction and fibrosis.However,the detailedmolecular mechanisms underlying fibrosis development are poorly understood.In this study,18 C57BL/6mice were randomized into two groups and exposed to CB and filtered air(FA)for 28 days,with 6 hr/day and 7 days perweek exposure regimen,respectively.The human normal bronchial epithelial cell line(BEAS-2B)was subjected to CB treatment for 24 h in vitro,with CB concentrations in 0,50,100,and 200μg/mL.Our study indicated that exposure to CB resulted in a reduction in lung function and the development of pulmonary fibrosis in mice.Furthermore,our results showed cytoskeleton rearrangement and epithelial-mesenchymal transition(EMT)phenotype in BEAS-2B cells were happened,after CB exposure.Subsequent studies revealed that elevated expression of THBS2 after CB primarily contributed to the development of pulmonary fibrosis.The research findings from both in vivo and in vitro studies provided evidence that piR-713551 was involved in CB exposure-induced EMT by targeting the THBS2 gene and activating theβ-catenin pathway.Mechanically,piR-713551/PIWIL4 complex activated the THBS2 transcription by recruitment of histone demethyltransferase KDM4A to reduce H3K9me3 modification at the THBS2 gene promoter.Conclusively,our research showed that CB exposure could activate EMT and lead pulmonary fibrosis which was modulated by piR-713551/PIWIL4 targeting THBS2. 展开更多
关键词 Carbon black(CB) Pulmonary fibrosis PIRNA Histone demethylation
原文传递
RNA-directed DNA methylation and demethylation in plants 被引量:23
16
作者 CHINNUSAMY Viswanathan 《Science China(Life Sciences)》 SCIE CAS 2009年第4期331-343,共13页
RNA-directed DNA methylation (RdDM) is a nuclear process in which small interfering RNAs (siRNAs) direct the cytosine methylation of DNA sequences that are complementary to the siRNAs. In plants, double stranded-RNAs ... RNA-directed DNA methylation (RdDM) is a nuclear process in which small interfering RNAs (siRNAs) direct the cytosine methylation of DNA sequences that are complementary to the siRNAs. In plants, double stranded-RNAs (dsRNAs) generated by RNA-dependent RNA polymerase 2 (RDR2) serve as precursors for Dicer-like 3 dependent biogenesis of 24-nt siRNAs. Plant specific RNA polymerase IV (Pol IV) is presumed to generate the initial RNA transcripts that are substrates for RDR2. siRNAs are loaded onto an argonaute4-containing RISC (RNA-induced silencing complex) that targets the de novo DNA methyltransferase DRM2 to RdDM target loci. Nascent RNA transcripts from the target loci are generated by another plant-specific RNA polymerase, Pol V, and these transcripts help recruit com- plementary siRNAs and the associated RdDM effector complex to the target loci in a transcrip- tion-coupled DNA methylation process. Small RNA binding proteins such as ROS3 may direct tar- get-specific DNA demethylation by the ROS1 family of DNA demethylases. Chromatin remodeling en- zymes and histone modifying enzymes also participate in DNA methylation and possibly demethylation. One of the well studied functions of RdDM is transposon silencing and genome stability. In addition, RdDM is important for paramutation, imprinting, gene regulation, and plant development. Lo- cus-specific DNA methylation and demethylation, and transposon activation under abiotic stresses suggest that RdDM is also important in stress responses of plants. Further studies will help illuminate the functions of RdDM in the dynamic control of epigenomes during development and environmental stress responses. 展开更多
关键词 ABIOTIC stress plant development SIRNAS DNA METHYLATION demethylation RDDM
原文传递
SIZ1-Mediated SUMOylation of ROS1 Enhances Its Stability and Positively Regulates Active DNA Demethylation in Arabidopsis 被引量:6
17
作者 Xiangfeng Kong Yechun Hong +4 位作者 Yi-Feng Hsu Huan Huang Xue Liu Zhe Song Jian-Kang Zhu 《Molecular Plant》 SCIE CAS CSCD 2020年第12期1816-1824,共9页
The 5-methylcytosine DNA glycosylase/lyase REPRESSOR OF SILENCING 1(ROS1)-mediated active DNA demethylation is critical for shaping the genomic DNA methylation landscape in Arabidopsis.Whether and how the stability of... The 5-methylcytosine DNA glycosylase/lyase REPRESSOR OF SILENCING 1(ROS1)-mediated active DNA demethylation is critical for shaping the genomic DNA methylation landscape in Arabidopsis.Whether and how the stability of ROS1 may be regulated by post-translational modifications is unknown.Using a methylation-sensitive PCR(CHOP-PCR)-based forward genetic screen forArabidopsis DNA hyper-methyl-ation mutants,we identified the SUMO E3 ligase SIZ1 as a critical regulator of active DNA demethylation.Dysfunction of SIZ1 leads to hyper-methylation at approximately 1000 genomic regions.SIZ1 physically in-teracts with ROS1 and mediates the SUMOylation of ROS1.The SUMOylation of ROS1 is reduced in siz1 mutant plants.Compared with that in wild-type plants,the protein level of ROS1 is significantly decreased,whereas there is an increased level of ROS1 transcripts in siz1 mutant plants.Our results suggest that SIZ1-mediated SUMOylation of ROS1 promotes its stability and positively regulates active DNA demethylation. 展开更多
关键词 SIZ1 SUMOylatoin ROS1 active DNA demethylation ARABIDOPSIS
原文传递
Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation 被引量:4
18
作者 Bo Wang Xing Fu +1 位作者 Mei-Jun Zhu Min Du 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 2017年第4期338-349,共12页
Retinoic acid (RA), a bioactive metaboUte of vitamin A, is a critical mediator of cell differentiation. RA blocks adipogenesis, but mechanisms remain to be established. ZFP423 is a key transcription factor maintaini... Retinoic acid (RA), a bioactive metaboUte of vitamin A, is a critical mediator of cell differentiation. RA blocks adipogenesis, but mechanisms remain to be established. ZFP423 is a key transcription factor maintaining white adipose identity. We found that RA inhibits Zfp423 expression and adipogenesis via blocking DNA demethylation in the promoter of Zfp423, a process mediated by growth arrest and DNA-damage-inducible protein alpha (GADD45A). RA induces the partnering between retinoic acid receptor (PAR) and tumor suppressor inhibitor of growth protein 1 (ING1), which prevents the formation of GADD45A and ING1 complex necessary for locus-specific Zfp423 DNA demethylation. In vivo, vitamin A supplementation prevents obesity, downregulates Godd45a expression, and reduces GADD45A binding and DNA demethylation in the Zfp423 promoter. Inhibition of Zfp423 expres- sion due to PA contributes to the enhanced brown adipogenesis. In summary, PA inhibits white adipogenesis by inducing PAR and ING1 interaction and inhibiting Godd45a expression, which prevents GADD45A-mediated DNA demethylation. 展开更多
关键词 vitamin A retinoic acid Gadd45α ADIPOGENESIS demethylation Zfp423
原文传递
A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin 被引量:6
19
作者 Yilin Wang Jin Wu +6 位作者 Ruihan Shen Yubao Li Guofeng Ma Shuang Qi Wenjuan Wu Yongcan Jin Bo Jiang 《Journal of Bioresources and Bioproducts》 EI CSCD 2023年第3期306-317,共12页
Lignin,as a natural antioxidant,shows great potential in food engineering and medicine.How-ever,the inherent macromolecular structure,high polydispersity,and few phenolic hydroxy seri-ously limit its antioxidant activ... Lignin,as a natural antioxidant,shows great potential in food engineering and medicine.How-ever,the inherent macromolecular structure,high polydispersity,and few phenolic hydroxy seri-ously limit its antioxidant activity.In this work,a mild iodocyclohexane demethylation for highly improving the antioxidant activity of lignin was proposed.The results showed-OCH 3 content exhibited an almost linear decrease as a function of treating time,and the demethylation and cleavage of𝛽-aryl ether bonds prompt an obvious increase in phenolic hydroxyl content(4.01 mmol/g)and a significant decline in aliphatic hydroxyl(∼0.03 mmol/g).Meanwhile,attributing to the fragmentation of𝛽β-O-4,β-β,and𝛽β-5 substructures,the polydispersity of lignin molecular weight decreases from 2.7 to 2.2.As a result,the formed catechol-typed lignin showed an out-standing antioxidant activity,with the radical(DPPH·)scavenging index(inverse of concentration for 50%of maximal effect(EC 50)value)over 2000 mL/mg,much superior to the commercial antioxidants(<500 mL/mg).Further structure-activity relationship analysis implied that the Ph-OH/-OCH 3 ratio might act as a key factor influencing the antioxidant activity of lignin.This mild demethylation demonstrates a facile and effective method for highly enhancing the antioxidant activity of lignin and makes the catechol-typed lignin a green and promising product for practical use in food,medicine,and pharmacy. 展开更多
关键词 LIGNIN Iodocyclohexane Mild demethylation Antioxidant activity Structure-activity relationship
在线阅读 下载PDF
A novel protein complex that regulates active DNA demethylation in Arabidopsis 被引量:3
20
作者 Pan Liu Wen-Feng Nie +11 位作者 Xiansong Xiong Yuhua Wang Yuwei Jiang Pei Huang Xueqiang Lin Guochen Qin Huan Huang Qingfeng Niu Jiamu Du Zhaobo Lang Rosa Lozano-Duran Jian-Kang Zhu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第4期772-786,共15页
Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression.The 5-methylcytosine DNA glycosylase/lyase ROS1 initiates a base-excision repair pathway for active DNA demethy... Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression.The 5-methylcytosine DNA glycosylase/lyase ROS1 initiates a base-excision repair pathway for active DNA demethylation and is required for the prevention of DNA hypermethylation at 1000 s of genomic regions in Arabidopsis.How ROS1 is regulated and targeted to specific genomic regions is not well understood.Here,we report the discovery of an Arabidopsis protein complex that contains ROS1,regulates ROS1 gene expression,and likely targets the ROS1 protein to specific genomic regions.ROS1 physically interacts with a WD40 domain protein(RWD40),which in turn interacts with a methyl-DNA binding protein(RMB1)as well as with a zinc finger and homeobox domain protein(RHD1).RMB1 binds to DNA that is methylated in any sequence context,and this binding is necessary for its function in vivo.Loss-of-function mutations in RWD40,RMB1,or RHD1 cause DNA hypermethylation at several tested genomic regions independently of the known ROS1 regulator IDM1.Because the hypermethylated genomic regions include the DNA methylation monitoring sequence in the ROS1 promoter,plants mutated in RWD40,RMB1,or RHD1 show increased ROS1 expression.Importantly,ROS1 binding to the ROS1 promoter requires RWD40,RMB1,and RHD1,suggesting that this complex dictates ROS1 targeting to this locus.Our results demonstrate that ROS1 forms a protein complex with RWD40,RMB1,and RHD1,and that this novel complex regulates active DNA demethylation at several endogenous loci in Arabidopsis. 展开更多
关键词 DNA demethylation DNA methylation methyl-DNA binding ROS1 WD40 domain
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部