期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Automated Red Deer Algorithm with Deep Learning Enabled Hyperspectral Image Classification
1
作者 B.Chellapraba D.Manohari +1 位作者 K.Periyakaruppan M.S.Kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2353-2366,共14页
Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is importa... Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is important for effective classification outcomes.Additionally,the recent advancements of deep learning(DL)models make it possible in several application areas.In addition,the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics.In this view,this article develops an automated red deer algorithm with deep learning enabled hyperspec-tral image(HSI)classification(RDADL-HIC)technique.The proposed RDADL-HIC technique aims to effectively determine the HSI images.In addition,the RDADL-HIC technique comprises a NASNetLarge model with Adagrad optimi-zer.Moreover,RDA with gated recurrent unit(GRU)approach is used for the identification and classification of HSIs.The design of Adagrad optimizer with RDA helps to optimally tune the hyperparameters of the NASNetLarge and GRU models respectively.The experimental results stated the supremacy of the RDADL-HIC model and the results are inspected interms of different measures.The comparison study of the RDADL-HIC model demonstrated the enhanced per-formance over its recent state of art approaches. 展开更多
关键词 Hyperspectral images image classification deep learning adagrad optimizer nasnetlarge model red deer algorithm
在线阅读 下载PDF
Intelligent Machine Learning with Metaheuristics Based Sentiment Analysis and Classification
2
作者 R.Bhaskaran S.Saravanan +4 位作者 M.Kavitha C.Jeyalakshmi Seifedine Kadry Hafiz Tayyab Rauf Reem Alkhammash 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期235-247,共13页
Sentiment Analysis(SA)is one of the subfields in Natural Language Processing(NLP)which focuses on identification and extraction of opinions that exist in the text provided across reviews,social media,blogs,news,and so... Sentiment Analysis(SA)is one of the subfields in Natural Language Processing(NLP)which focuses on identification and extraction of opinions that exist in the text provided across reviews,social media,blogs,news,and so on.SA has the ability to handle the drastically-increasing unstructured text by transform-ing them into structured data with the help of NLP and open source tools.The current research work designs a novel Modified Red Deer Algorithm(MRDA)Extreme Learning Machine Sparse Autoencoder(ELMSAE)model for SA and classification.The proposed MRDA-ELMSAE technique initially performs pre-processing to transform the data into a compatible format.Moreover,TF-IDF vec-torizer is employed in the extraction of features while ELMSAE model is applied in the classification of sentiments.Furthermore,optimal parameter tuning is done for ELMSAE model using MRDA technique.A wide range of simulation analyses was carried out and results from comparative analysis establish the enhanced effi-ciency of MRDA-ELMSAE technique against other recent techniques. 展开更多
关键词 Sentiment analysis data classification machine learning red deer algorithm extreme learning machine natural language processing
在线阅读 下载PDF
自由节点差分法寻点策略研究及验证 被引量:2
3
作者 卢俊宇 徐春光 +2 位作者 陈洁 刘君 王元靖 《空气动力学学报》 CSCD 北大核心 2024年第4期65-74,I0002,共11页
混合网格具有良好的贴体性,适用于Navier-Stokes方程的计算,但在网格交界面处需要通过插值进行流场信息交换,而这一过程会引入误差。陈洁等提出了一种适用于无序网格点的自由节点差分计算方法,该方法可对重叠网格交界面流场进行差分计算... 混合网格具有良好的贴体性,适用于Navier-Stokes方程的计算,但在网格交界面处需要通过插值进行流场信息交换,而这一过程会引入误差。陈洁等提出了一种适用于无序网格点的自由节点差分计算方法,该方法可对重叠网格交界面流场进行差分计算,无须采用插值方法进行流场信息传递,解决了插值方法引入误差的问题。但该自由节点差分法的计算模板需要从中心点周围的点云中选择网格点构成,不同选点策略对计算结果的影响不同。针对自由节点差分法的选点需求,本文综合考虑角度、正交性、距离等因素,提出了几种不同选点策略,并利用数值实验进行了验证。结果表明,本文提出的选点策略符合自由节点差分法的构造思想,均能获得稳定的收敛解,其中模板点与中心点距离对计算精度影响最大,是选点策略的首要影响因素。 展开更多
关键词 混合网格 自由节点差分法 deer算法 点云 选点准则
在线阅读 下载PDF
基于梯度的自由节点差分法寻点策略研究 被引量:2
4
作者 卢俊宇 徐春光 +2 位作者 陈洁 刘君 王元靖 《气动研究与试验》 2024年第1期110-118,共9页
针对混合网格交界面流场信息的计算,本文介绍了一种适用于无序网格点的自由节点差分法,实现了重叠网格交界面流场的差分计算,避免了传统上采用插值方法带来的额外误差。自由节点差分法的计算模板,需要从计算点周围点云中选择合适的邻居... 针对混合网格交界面流场信息的计算,本文介绍了一种适用于无序网格点的自由节点差分法,实现了重叠网格交界面流场的差分计算,避免了传统上采用插值方法带来的额外误差。自由节点差分法的计算模板,需要从计算点周围点云中选择合适的邻居节点构成,不同的选点策略会影响计算模板质量,导致计算精度存在差异。超声速流场通常存在强间断,间断处梯度变化剧烈,梯度变化会对计算模板构造产生影响,进而影响流场计算精度。为了在计算模板中反映流场梯度的变化,本文提出了综合考虑流场梯度和网格几何因素的计算模板构造思想,给出了几种具体的选点策略,并采用数值试验对不同策略进行了对比分析,确定了优选方案。数值试验结果表明,相比于只考虑网格几何因素的寻点策略,综合寻点策略具有更高的计算精度,可以作为自由节点差分法计算模板的寻点方法,使自由节点差分法的计算结果更为精准。 展开更多
关键词 自由节点差分法 deer算法 计算模板 混合网格 选点策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部