为全面提取节点的全局特征,提高复杂网络关键节点识别结果的准确性,提出一种基于改进DDQN(double deep Q-network)算法的复杂网络关键节点识别方法。通过重构DDQN的初始奖励值、引入回退探索和优先访问方法,改进DDQN算法,提取节点全局特...为全面提取节点的全局特征,提高复杂网络关键节点识别结果的准确性,提出一种基于改进DDQN(double deep Q-network)算法的复杂网络关键节点识别方法。通过重构DDQN的初始奖励值、引入回退探索和优先访问方法,改进DDQN算法,提取节点全局特征,从而提升全局特征提取的效率和提取结果的准确性。引入聚类系数获取节点的局部特征,通过网络性能均值实验得到全局特征和局部特征的融合参数,对全局特征和局部特征进行融合,得到节点的重要度排序,从而实现关键节点识别。在7个真实网络数据集上的实验结果表明,此方法在基于网络性能均值的评价指标以及SIR模型上均优于对比的基线方法。证明其可以更全面地提取节点全局特征,更准确地识别关键节点。展开更多
The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the mai...The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the main trends of UAV development in the future.This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network(DDQN)algorithm.We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning(DRL)for the long period task.We also propose the concept of temporary storage area,optimizing the memory playback unit of the traditional DDQN algorithm,improving the convergence speed of the algorithm,and speeding up the training process of the algorithm.Different from traditional task environment,this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment.Based on the DDQN algorithm,the collaborative tasks of UAV swarm in different task scenarios are trained.The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy,and improving the intelligence of UAV swarm collaborative task execution.The simulation results show that after training,the proposed UAV swarm can carry out the rendezvous task well,and the success rate of the mission reaches 90%.展开更多
Directly applying the B-spline interpolation function to process plate cams in a computer numerical control(CNC)system may produce verbose tool-path codes and unsmooth trajectories.This paper is devoted to addressing ...Directly applying the B-spline interpolation function to process plate cams in a computer numerical control(CNC)system may produce verbose tool-path codes and unsmooth trajectories.This paper is devoted to addressing the problem of B-splinefitting for cam pitch curves.Considering that the B-spline curve needs to meet the motion law of the follower to approximate the pitch curve,we use the radial error to quantify the effects of thefitting B-spline curve and the pitch curve.The problem thus boils down to solving a difficult global optimization problem tofind the numbers and positions of the control points or data points of the B-spline curve such that the cumulative radial error between thefitting curve and the original curve is minimized,and this problem is attempted in this paper with a double deep Q-network(DDQN)reinforcement learning(RL)algorithm with data points traceability.Specifically,the RL envir-onment,actions set and current states set are designed to facilitate the search of the data points,along with the design of the reward function and the initialization of the neural network.The experimental results show that when the angle division value of the actions set isfixed,the proposed algorithm can maximize the number of data points of the B-spline curve,and accurately place these data points to the right positions,with the minimum average of radial errors.Our work establishes the theoretical foundation for studying splinefitting using the RL method.展开更多
为调整不同路段的限速值,平滑交通流,从而提升高速公路车辆通行的安全性和效率,针对交通瓶颈区设计一种基于深度强化学习的平滑车速管控系统。该系统主要包含动态限速启动、限速值确定与更新和情报板动态发布等3个模块。将深度强化学习...为调整不同路段的限速值,平滑交通流,从而提升高速公路车辆通行的安全性和效率,针对交通瓶颈区设计一种基于深度强化学习的平滑车速管控系统。该系统主要包含动态限速启动、限速值确定与更新和情报板动态发布等3个模块。将深度强化学习算法DDQN(Double Deep Q-Network)引入系统中,提出一种基于DDQN的平滑车速控制策略,从目标网络和经验回顾2个维度提升该算法的性能。基于元胞传输模型(Cellular Transmission Model,CTM)对宁夏高速公路某路段的交通流运行场景进行仿真,以车辆总通行时间和车流量为评价指标验证该系统的有效性,结果表明该系统能提高瓶颈区内拥堵路段车辆的通行效率。展开更多
文摘为全面提取节点的全局特征,提高复杂网络关键节点识别结果的准确性,提出一种基于改进DDQN(double deep Q-network)算法的复杂网络关键节点识别方法。通过重构DDQN的初始奖励值、引入回退探索和优先访问方法,改进DDQN算法,提取节点全局特征,从而提升全局特征提取的效率和提取结果的准确性。引入聚类系数获取节点的局部特征,通过网络性能均值实验得到全局特征和局部特征的融合参数,对全局特征和局部特征进行融合,得到节点的重要度排序,从而实现关键节点识别。在7个真实网络数据集上的实验结果表明,此方法在基于网络性能均值的评价指标以及SIR模型上均优于对比的基线方法。证明其可以更全面地提取节点全局特征,更准确地识别关键节点。
基金supported by the Aeronautical Science Foundation(2017ZC53033).
文摘The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the main trends of UAV development in the future.This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network(DDQN)algorithm.We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning(DRL)for the long period task.We also propose the concept of temporary storage area,optimizing the memory playback unit of the traditional DDQN algorithm,improving the convergence speed of the algorithm,and speeding up the training process of the algorithm.Different from traditional task environment,this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment.Based on the DDQN algorithm,the collaborative tasks of UAV swarm in different task scenarios are trained.The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy,and improving the intelligence of UAV swarm collaborative task execution.The simulation results show that after training,the proposed UAV swarm can carry out the rendezvous task well,and the success rate of the mission reaches 90%.
基金supported by Fujian Province Nature Science Foundation under Grant No.2018J01553.
文摘Directly applying the B-spline interpolation function to process plate cams in a computer numerical control(CNC)system may produce verbose tool-path codes and unsmooth trajectories.This paper is devoted to addressing the problem of B-splinefitting for cam pitch curves.Considering that the B-spline curve needs to meet the motion law of the follower to approximate the pitch curve,we use the radial error to quantify the effects of thefitting B-spline curve and the pitch curve.The problem thus boils down to solving a difficult global optimization problem tofind the numbers and positions of the control points or data points of the B-spline curve such that the cumulative radial error between thefitting curve and the original curve is minimized,and this problem is attempted in this paper with a double deep Q-network(DDQN)reinforcement learning(RL)algorithm with data points traceability.Specifically,the RL envir-onment,actions set and current states set are designed to facilitate the search of the data points,along with the design of the reward function and the initialization of the neural network.The experimental results show that when the angle division value of the actions set isfixed,the proposed algorithm can maximize the number of data points of the B-spline curve,and accurately place these data points to the right positions,with the minimum average of radial errors.Our work establishes the theoretical foundation for studying splinefitting using the RL method.
文摘为调整不同路段的限速值,平滑交通流,从而提升高速公路车辆通行的安全性和效率,针对交通瓶颈区设计一种基于深度强化学习的平滑车速管控系统。该系统主要包含动态限速启动、限速值确定与更新和情报板动态发布等3个模块。将深度强化学习算法DDQN(Double Deep Q-Network)引入系统中,提出一种基于DDQN的平滑车速控制策略,从目标网络和经验回顾2个维度提升该算法的性能。基于元胞传输模型(Cellular Transmission Model,CTM)对宁夏高速公路某路段的交通流运行场景进行仿真,以车辆总通行时间和车流量为评价指标验证该系统的有效性,结果表明该系统能提高瓶颈区内拥堵路段车辆的通行效率。