DC/AC converters are very important components that have to be chosen efficiently for each type of power station. In this article, we present in details, a comparison between three different architectures of multileve...DC/AC converters are very important components that have to be chosen efficiently for each type of power station. In this article, we present in details, a comparison between three different architectures of multilevel inverters, the flying capacitor multilevel inverter (FCMLI), the diode clamped multilevel inverter (DCMLI), and the cascaded H-bridge multilevel inverter (CHMLI). Thus the comparison is focused on the output voltage quality, the complexity of the power circuits, the cost of implementation, and the influence on a power bank inside the renewable power station. We also investigate trough simulation the efficient number of levels and suitable characteristics for the CHMLI that showed the most promising performance. The study uses Matlab Simulink platform as a tool of simulation, and aim to choose the most qualified inverter, for a potential insertion on a hybrid renewable energy platform (wind-solar). In all the simulations we use the same PWM control type (SPWM).展开更多
Multilevel inverters are used in many industrial applications because of good power quality, minimum losses and less harmonics contents. Multilevel inverters require no series connected synchronized switching devices,...Multilevel inverters are used in many industrial applications because of good power quality, minimum losses and less harmonics contents. Multilevel inverters require no series connected synchronized switching devices, transformer and complex filters. In this paper 10, 18, 24 diode clamped multi-level inverters (DCMLI) are implemented using trust region dog leg optimization method to find the optimized values of switching angles (θ). It decreases the total harmonic distortion (THD) of the output voltages and to reduce the complexity of external filter required. The multi-level inverters are implemented in MATLAB Simulation and results are compared in terms of harmonics, system complexity and efficiency.展开更多
文摘DC/AC converters are very important components that have to be chosen efficiently for each type of power station. In this article, we present in details, a comparison between three different architectures of multilevel inverters, the flying capacitor multilevel inverter (FCMLI), the diode clamped multilevel inverter (DCMLI), and the cascaded H-bridge multilevel inverter (CHMLI). Thus the comparison is focused on the output voltage quality, the complexity of the power circuits, the cost of implementation, and the influence on a power bank inside the renewable power station. We also investigate trough simulation the efficient number of levels and suitable characteristics for the CHMLI that showed the most promising performance. The study uses Matlab Simulink platform as a tool of simulation, and aim to choose the most qualified inverter, for a potential insertion on a hybrid renewable energy platform (wind-solar). In all the simulations we use the same PWM control type (SPWM).
文摘Multilevel inverters are used in many industrial applications because of good power quality, minimum losses and less harmonics contents. Multilevel inverters require no series connected synchronized switching devices, transformer and complex filters. In this paper 10, 18, 24 diode clamped multi-level inverters (DCMLI) are implemented using trust region dog leg optimization method to find the optimized values of switching angles (θ). It decreases the total harmonic distortion (THD) of the output voltages and to reduce the complexity of external filter required. The multi-level inverters are implemented in MATLAB Simulation and results are compared in terms of harmonics, system complexity and efficiency.