期刊文献+
共找到12,084篇文章
< 1 2 250 >
每页显示 20 50 100
Uncovering the catalyst/electrolyte interfacial process by frequency dispersion of capacitance
1
作者 Jinzhen Huang Erica D.Clinton +3 位作者 Kenneth Crossley Juliana Bruneli Falqueto Thomas J.Schmidt Emiliana Fabbri 《Journal of Energy Chemistry》 2025年第9期199-209,I0007,共12页
Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalys... Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalysis,its effectiveness and power have not been fully harnessed to elucidate complex interfacial processes.Herein,we use the frequency dispersion parameter,n,which is extracted from EIS measurements(C_(s)=af^(n+1),-2<n<-1),to describe the dispersion characteristics of capacitance and interfacial properties of Co_(3)O_(4) before the onset of oxygen evolution reaction(OER)in alkaline conditions.We first prove that the n-value is sensitive to the interfacial electronic changes associated with Co redox processes and surface reconstruction.The n-value decreases by increasing the specific/active surface area of the catalysts.We further modify the interfacial properties by changing different components,i.e.,replacing the proton with deuterium,adding ethanol as a new oxidant,and changing the cation in the electrolyte.Intriguingly,the n-value can identify different influences on the interfacial process of proton transfer,the decrease and blocking of oxidized Co species,and the interfacial water structure.We demonstrate that the n-value extracted from EIS measurements is sensitive to the kinetic isotope effect,electrolyte cation,adsorbate surface coverage of oxidized Co species,and the interfacial water structure.Thus,it can be helpful to differentiate the multiple factors affecting the catalyst interface.These findings convey that the frequency dispersion of capacitance is a convenient and useful method to uncover the interfacial properties under electrocatalytic conditions,which helps to advance the understanding of the interfaceactivity relationship. 展开更多
关键词 Frequency dispersion of capacitance Electrochemical impedance spectroscopy Catalyst/electrolyte interface Interfacial capacitance Oxygen evolution reaction
在线阅读 下载PDF
Crystal-Collapse-Induced Synthesis of High-Capacitance LaCoO_(x)/Co-Doped Carbon-Based Supercapacitors
2
作者 Zhihao Deng Yuanbo Wang +5 位作者 Wu Shao Jingwen He Jie Sheng Ronghao Cen Yufei Fu Wenjun Wu 《Transactions of Tianjin University》 2025年第1期29-41,共13页
The development of high-performance,reproducible carbon(C)-based supercapacitors remains a significant challenge because of limited specific capacitance.Herein,we present a novel strategy for fabricating LaCoO_(x) and... The development of high-performance,reproducible carbon(C)-based supercapacitors remains a significant challenge because of limited specific capacitance.Herein,we present a novel strategy for fabricating LaCoO_(x) and cobalt(Co)-doped nanoporous C(LaCoO_(x)/Co@ZNC)through the carbonization of Co/Zn-zeolitic imidazolate framework(ZIF)crystals derived from a PVP-Co/Zn/La precursor.The unique ZIF structure effectively disrupted the graphitic C framework,preserved the Co active sites,and enhanced the electrical conductivity.The synergistic interaction between pyridinic nitrogen and Co ions further promoted redox reactions.In addition,the formation of a hierarchical pore structure through zinc sublimation facili-tated electrolyte diffusion.The resulting LaCoO_(x)/Co@ZNC exhibited exceptional electrochemical performance,delivering a remarkable specific capacitance of 2,789 F/g at 1 A/g and outstanding cycling stability with 92%capacitance retention after 3,750 cycles.Our findings provide the basis for a promising approach to advancing C-based energy storage technologies. 展开更多
关键词 SUPERcapacitOR High capacitance Carbon electrode Doping Crystal-collapse
在线阅读 下载PDF
Mechanical manipulation of the transient negative capacitance effect in resistor-ferroelectric capacitor circuit
3
作者 Qian He Weijin Chen +1 位作者 Xin Luo Yue Zheng 《Acta Mechanica Sinica》 2025年第2期237-246,共10页
Transient negative capacitance(NC),as an available dynamic charge effect achieved in resistor-ferroelectric capacitor(R-FEC)circuits,has triggered a series of theoretical and experimental works focusing on its physica... Transient negative capacitance(NC),as an available dynamic charge effect achieved in resistor-ferroelectric capacitor(R-FEC)circuits,has triggered a series of theoretical and experimental works focusing on its physical mechanism and device application.Here,we analytically derived the effects of different mechanical conditions on the transient NC behaviors in the R-FEC circuit based on the phenomenological model.It shows that the ferroelectric capacitor can exhibit either NC(i.e.,“single NC”and“double NC”)or positive capacitance,depending on the mechanical condition and temperature.Further numerical calculations show that the voltage drop caused by NC can be effectively controlled by temperature,applied stress,or strain.The relationship between NC voltage drop and system configurations including external resistance,dynamical coefficient of polarization,and input voltage are presented,showing diverse strategies to manipulate the NC effect.These results provide theoretical guidelines for rational design and efficient control of NC-related electronic devices. 展开更多
关键词 FERROELECTRIC Transient negative capacitance Mechanical manipulation
原文传递
Capacitance decay mechanism of vanadium nitride supercapacitor electrodes in KOH electrolytes
4
作者 Xiu-Li Li Hao Song +7 位作者 Yong-Hui Zhang Yu-Lei Ren Qi-Fei Guo Zi-Huan Tang Zhuo Li Biao Gao Paul K.Chu Kai-Fu Huo 《Rare Metals》 2025年第6期3909-3919,共11页
Vanadium nitride(VN)is a promising pseudocapacitive material due to the high theoretical capacity,rapid redox Faradaic kinetics,and appropriate potential window.Although VN shows large pseudocapacitance in alkaline el... Vanadium nitride(VN)is a promising pseudocapacitive material due to the high theoretical capacity,rapid redox Faradaic kinetics,and appropriate potential window.Although VN shows large pseudocapacitance in alkaline electrolytes,the electrochemical instability and capacity degradation of VN electrode materials present significant challenges for practical applications.Herein,the capacitance decay mechanism of VN is investigated and a simple strategy to improve cycling stability of VN supercapacitor electrodes is proposed by introducing VO_(4)^(3-)anion in KOH electrolytes.Our results show that the VN electrode is electrochemical stabilization between-1.0and-0.4 V(vs.Hg/Hg O reference electrode)in 1.0 MKOH electrolyte,but demonstrates irreversible oxidation and fast capacitance decay in the potential range of-0.4 to0 V.In situ electrochemical measurements reveal that the capacitance decay of VN from-0.4 to 0 V is ascribed to the irreversible oxidation of vanadium(V)of N–V–O species by oxygen(O)of OH^(-).The as-generated oxidization species are subsequently dissolved into KOH electrolytes,thereby undermining the electrochemical stability of VN.However,this irreversible oxidation process could be hindered by introducing VO_(4)^(3-)in KOH electrolytes.A high volumetric specific capacitance of671.9 F.cm^(-3)(1 A.cm^(-3))and excellent cycling stability(120.3%over 1000 cycles)are achieved for VN nanorod electrode in KOH electrolytes containing VO_(4)^(3-).This study not only elucidates the failure mechanism of VN supercapacitor electrodes in alkaline electrolytes,but also provides new insights into enhancing pseudocapacitive energy storage of VN-based electrode materials. 展开更多
关键词 Vanadium nitride capacitance decay PSEUDOcapacitance Oxidation mechanism SUPERcapacitORS
原文传递
Effects of noise on fluidized bed characteristics measurements by electrical capacitance tomography
5
作者 Kai Huang Chunlei Pei +4 位作者 Shuanghe Meng Wuqiang Yang Hua Li Mao Ye Jinlong Gong 《Chinese Journal of Chemical Engineering》 2025年第3期219-233,共15页
Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is... Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows. 展开更多
关键词 Noise Electrical capacitance tomography Fluidized bed Signal-to-noise ratio MEASUREMENT
在线阅读 下载PDF
Evaluation of dynamic inter-well connectivity by using the state-variable-capacitance model
6
作者 Li-Wen Guo Shi-Yuan Qu +2 位作者 Yuan-Yuan Lei Zhi-Hong Kang Shuo-Liang Wang 《Petroleum Science》 2025年第8期3380-3396,共17页
During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face ... During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face challenges when dealing with rapidly changing reservoir conditions over time.Additionally,TC models struggle with complex,random noise primarily caused by measurement errors in production and injection rates.To address these challenges,this study introduces a dynamic capacitance(SV-DC)model based on state variables.By integrating the extended Kalman filter(EKF)algorithm,the SV-DC model provides more flexible predictions of inter-well connectivity and time-lag efficiency compared to the TC model.The robustness of the SV-DC model is verified by comparing relative errors between preset and calculated values through Monte Carlo simulations.Sensitivity analysis was performed to compare the model performance with the benchmark,using the Qinhuangdao Oilfield as a case study.The results show that the SV-DC model accurately predicts water breakthrough times.Increases in the liquid production index and water cut in two typical wells indicate the development time of ineffective circulation channels,further confirming the accuracy and reliability of the model.The SV-DC model offers significant advantages in addressing complex,dynamic oilfield production scenarios and serves as a valuable tool for the efficient and precise planning and management of future oilfield developments. 展开更多
关键词 capacitance model Inter-well connectivity Time-lag coefficient Connected volume Reservoir simulation
原文传递
Enhanced specific capacitance of supercapacitors using wide band gap NdCrO_(3) and NdCrO_(3)/graphene oxide nanocomposites
7
作者 Rabia Siddiqui Malika Rani +4 位作者 Akram Ibrahim Aqeel Ahmed Shah Aamir Razaq Shehar Bano M.Ajmal Khan 《Journal of Rare Earths》 2025年第10期2231-2237,I0006,共8页
Neodymium chromium oxide(NdCrO_(3))and NdCrO_(3)/graphene oxide(GO)nanocomposite were synthesized via sol-gel and co-precipitation techniques for being used in high-perfo rmance supercapacitors and for the possible ap... Neodymium chromium oxide(NdCrO_(3))and NdCrO_(3)/graphene oxide(GO)nanocomposite were synthesized via sol-gel and co-precipitation techniques for being used in high-perfo rmance supercapacitors and for the possible application in ultraviolet(UV)materials.Herein the systematic synthesis approach was adopted,which enhances the optical and electrical properties of the grown wide band-gap composite nanomaterial.Structural characterization of the grown materials was attempted using X-ray diffraction(XRD)and scanning electron microscopy(SEM).Most importantly the electrochemical analysis of the grown samples was carried out by employing a glassy carbon electrode and 3 mol/L KOH electrolyte,which demonstrates significant improvements in a specific capacitance of approximately360 F/g,an energy density of approximately 18 Wh/kg,and a maximum power density of approximately 257 W/kg,respectively.Moreover,NdCrO_(3)/GO nanocomposite maintains a cyclic stability of 97.6%after4000 cycles.Photoluminescence(PL)spectroscopy confirms the wide bandgap nature of the NdCrO_(3)and NdCrO_(3)/GO nanocomposite,indicating its potential application in UVC devices.These findings emphasize the potential of the NdCrO_(3)/GO nanocomposite in advancing efficient energy storage solutions and the possibility of being used in UVC technology. 展开更多
关键词 Neodymium chromium oxide(NdCrO_(3)) NdCrO_(3)/Graphene oxide(GO) NANOCOMPOSITE Rare earths Energy storage devices Specific capacitance Wide band-gap NANOCOMPOSITE
原文传递
Research on the distributed capacitance for high-voltage key components on CRAFT NNBI
8
作者 Bo LIU Zhimin LIU +8 位作者 Caichao JIANG Sheng LIU Junjun PAN Shiyong CHEN Wei WEI Yuchen QU Lizhen LIANG Ruoxin BAI Yuanlai XIE 《Plasma Science and Technology》 2025年第4期58-63,共6页
The negative ion based neutral beam injector(NNBI)with a beam energy of 400 keV is one of the subsystems at the Comprehensive Research fAcility for Fusion Technology(CRAFT)in China.The distributed capacitance of the h... The negative ion based neutral beam injector(NNBI)with a beam energy of 400 keV is one of the subsystems at the Comprehensive Research fAcility for Fusion Technology(CRAFT)in China.The distributed capacitance of the high-voltage components is an important basis for the design of surge suppression devices at CRAFT NNBI.This study conducted calculations of distributed capacitance for the key components,including the high-voltage deck,transmission line and isolation transformer in the power supply system using the finite element method.The relationship between the high-voltage deck(HVD)distributed capacitance and the distance from the wall is discussed.The differences in distributed capacitance and energy storage between noncoaxial and coaxial transmission lines are also debated.Finally,the capacitance between the primary and secondary windings of the-400 kV isolation transformer,as well as between the secondary winding and the oil tank casing,was calculated. 展开更多
关键词 NNBI power supply system direct-current high voltage distributed capacitance finite elements analysis(Some figures may appear in colour only in the online journal)
在线阅读 下载PDF
Hybrid pseudocapacitance/co-intercalation mechanisms of TiO_(2)/graphite anodes for rapid sodium-ion storage
9
作者 Ze-Rui Yan Da-Fu Tang +6 位作者 Bin-Hao Wang Xiao-Juan Huang Xia Zou Si-Cheng Fan Yan Wu Tong Shu Qiu-Long Wei 《Rare Metals》 SCIE EI CAS CSCD 2024年第10期5427-5434,共8页
Developing anode materials with high specific/volumetric capacities,high-rate capability,long-term cycles and low cost is significant for advanced sodium-ion storage.Herein,we report the hybrid TiO_(2)/graphite(TiO_(2... Developing anode materials with high specific/volumetric capacities,high-rate capability,long-term cycles and low cost is significant for advanced sodium-ion storage.Herein,we report the hybrid TiO_(2)/graphite(TiO_(2)/G)anodes for fast(dis)charging sodium-ion storage.Taking advantage of the rapid pseudocapacitive surface-redox on anatase TiO_(2)nanoparticles(NPs)and fast[Na(diglyme)_(x)]^(+)co-intercalation into graphite,the hybrid anodes display excellent rate capabilities.Additionally,the TiO_(2)NPs are able to fill into the interspaces among graphite flakes and the graphite provides continuous electron pathways,which largely boosts the volumetric capacities and rate performance. 展开更多
关键词 BOOST INTERCALATION capacitance
原文传递
Impact of dark current on pinned photo-diode capacitance of CMOS image sensor in low illumination regime
10
作者 Mohsin Suharwerdi Gausia Qazi 《Optoelectronics Letters》 EI 2024年第11期654-657,共4页
Applications for quanta and space sensing both depend on efficient low-light imaging.To precisely optimize and design image sensor pixels for these applications,it is crucial to analyze the mechanisms behind dark curr... Applications for quanta and space sensing both depend on efficient low-light imaging.To precisely optimize and design image sensor pixels for these applications,it is crucial to analyze the mechanisms behind dark current generation,considering factors such as temperature,trap cross-section and trap concentration.The thresholds for these generating effects are computed using optoelectrical technology computer aided design(TCAD)simulations,and the ensuing changes in pinned photo-diode(PPD)dynamic capacitance are observed.Various generation models along with an interfacial trap model are used to compare PPD capacitance fluctuations during light and dark environments.With the use of this comparison study,current compact models of complementary metal oxide semiconductor(CMOS)image sensors can be modified to accurately capture the impacts of dark current in low-light conditions.The model developed through this study demonstrates a deviation of only 6.85%from the behavior observed in physical devices.These results not only enhance our understanding of dark current generation mechanisms but also offer practical applications by improving the performance and accuracy of image sensors. 展开更多
关键词 COMPUTER image capacitance
原文传递
Reliability of DC-link capacitor in pulsed power supply for accelerator magnet
11
作者 Jie Wang Da-Qing Gao +2 位作者 Wan-Zeng Shen Hong-Bin Yan Li-Jun Mao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期28-40,共13页
Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an ... Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an analytical method for the capacitor current on the H-bridge topology side,the root-mean-square value of the capacitor current was calculated,which helps in selecting the DC-link capacitors.The proposed method solves this problem quickly and with high accuracy.The current reconstruction of the DC-link capacitor is proposed to avoid structural damage in the capacitor’s current measurement,and the capacitor’s hotspot temperature and temperature rise are calculated using the FFT transform.The test results showed that the error between the calculated and measured temperature increases was within 1.5℃.Finally,the lifetime of DC-link capacitors was predicted based on Monte Carlo analysis.The proposed method can evaluate the reliability of DC-link capacitors in a non-isolated switching pulsed power supply for accelerators and is also applicable to film capacitors. 展开更多
关键词 Aluminum electrolytic capacitor dc-link current DC–DC power converter Hotspot temperature
在线阅读 下载PDF
A wood pulp sponge cleaning wipe as a high-performance bioanode material in microbial electrochemical systems for its vast biomass carrying capacity,large capacitance,and small charge transfer resistance
12
作者 Pinpin Yang Yaqian Gao +4 位作者 Weihua He Jingkun An Jia Liu Nan Li Yujie Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第14期1-10,共10页
Microbial electrochemical systems are a promising green and sustainable technology that can transform waste into electricity.Improving conversion efficiency and lowering system costs,particularly for elec-trodes,are t... Microbial electrochemical systems are a promising green and sustainable technology that can transform waste into electricity.Improving conversion efficiency and lowering system costs,particularly for elec-trodes,are the primary directions that promote practical application.Cellulose sponges made from wood pulp have been industrially mass-produced in various application scenarios due to their porosity and green sustainability.In this study,the three-dimensional(3D)porous cellulose sponges carbon(CSC)was obtained by directly carbonizing cellulose sponges at different temperatures(600,700,800,900,1000,and 1100℃).It has been successfully used as a high-performance anode in microbial fuel cells(MFCs).The carbonization temperature significantly impacted the materials’specific surface area,con-ductivity,and capacitance.The greater the anode material’s carbonization temperature,the lower the charge transfer resistance and the higher the maximum power density(CSC-1100,4.1±0.1 W m^(-2)).The CSC-700's maximum power density(3.62±0.11 W m^(-2))was the highest power density reported to date among lignocellulose-based anodes with relatively low energy consumption.The pleated multilayer porous surface promotes microbial adhesion and can build thicker biofilms with the highest biomass of 2661±117μg cm^(-2)(CSC-1100)and containing 86%electrogenic bacteria(Geobacter).To investigate the effect of conducting polymers on the material’s surface,we introduced polyaniline and polypyrrole.We found that the CSC-1000/PPy bioanodes produced a maximum power density(4.18±0.05 W m^(-2)),slightly higher than of without polypyrrole-modified(CSC-1000,3.99±0.06 W m^(-2)),indicating that the CSCs anode surface had excellent electron transfer efficiency and could achieve the same amount of energy as the polypyrrole surface.This study introduced a promising method for fabricating high-performance anodes using low-cost,industrialized,and sustainable materials. 展开更多
关键词 POLYANILINE Polypyrrol capacitance anode Electrogenic biofilms Extracellular electron transfer
原文传递
Theoretical insights into the role of defects in the optimization of the electrochemical capacitance of graphene 被引量:1
13
作者 Alex Aziz Wei Yu +3 位作者 Rui Tang Rachel Crespo-Otero Devis Di Tommaso Hirotomo Nishihara 《Energy Materials and Devices》 2024年第3期81-96,共16页
Graphene-based frameworks suffer from a low quantum capacitance due to graphene’s Dirac point at the Fermi level.This theoretical study investigated the effect structural defects,nitrogen and boron doping,and surface... Graphene-based frameworks suffer from a low quantum capacitance due to graphene’s Dirac point at the Fermi level.This theoretical study investigated the effect structural defects,nitrogen and boron doping,and surface epoxy/hydroxy groups have on the electronic structure and capacitance of graphene.Density functional theory calculations reveal that the lowest energy configurations for nitrogen or boron substitutional doping occur when the dopant atoms are segregated.This elucidates why the magnetic transition for nitrogen doping is experimentally only observed at higher doping levels.We also highlight that the lowest energy configuration for a single vacancy defect is magnetic.Joint density functional theory calculations show that the fixed band approximation becomes increasingly inaccurate for electrolytes with lower dielectric constants.The introduction of structural defects rather than nitrogen or boron substitutional doping,or the introduction of adatoms leads to the largest increase in density of states and capacitance around graphene’s Dirac point.However,the presence of adatoms or substitutional doping leads to a larger shift of the potential of zero charge away from graphene’s Dirac point. 展开更多
关键词 implicit solvent models electrical double layer joint density functional theory graphene based supercapacitors quantum capacitance
在线阅读 下载PDF
A review of carbon-based hybrid materials for supercapacitors 被引量:1
14
作者 Theodore Azemtsop Manfo Hannu Laaksonen 《新型炭材料(中英文)》 北大核心 2025年第1期81-110,共30页
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti... Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors. 展开更多
关键词 Carbon-based hybrid material Structure design Electrode material Specific capacitance SUPERcapacitORS
在线阅读 下载PDF
Modeling the sensitivity of capacitive pressure sensors with microstructured wavy surfaces 被引量:1
15
作者 Han Peng Nian Zhang +1 位作者 Hengxu Song Liu Wang 《Acta Mechanica Sinica》 2025年第5期104-116,共13页
In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance ... In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology. 展开更多
关键词 capacitive pressure sensor Sensitivity Micro-structured wavy surface
原文传递
Locally Enhanced Flow and Electric Fields Through a Tip Effect for Efficient Flow‑Electrode Capacitive Deionization
16
作者 Ziquan Wang Xiangfeng Chen +5 位作者 Yuan Zhang Jie Ma Zhiqun Lin Amor Abdelkader Maria‑Magdalena Titirici Libo Deng 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期1-17,共17页
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer... Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability. 展开更多
关键词 Flow-electrode capacitive deionization Current collector Tip effect DESALINATION
在线阅读 下载PDF
Real-Time Error Analysis of Multi-Channel Capacitive Voltage Transformer Using Co-Prediction Matrix
17
作者 Jiusong Hu Ao Xiong +2 位作者 Yongqi Liu Guaxuan Xiao Yi Zhong 《Journal of Power and Energy Engineering》 2025年第1期1-17,共17页
Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage... Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations. 展开更多
关键词 capacitive Voltage Transformers Co-Prediction Matrix HIGH-VOLTAGE Measurement error
在线阅读 下载PDF
基于多软件协同的电驱系统DC-Link电容热仿真研究
18
作者 周丽萍 《汽车电器》 2025年第7期101-103,共3页
随着新能源汽车行业的迅猛发展,电驱系统作为其核心部件,其性能和可靠性对整车性能有着决定性的影响。DC-Link电容作为电驱系统中的关键组件,负责平滑电压波动和滤除高频噪声,其热管理对于系统的稳定性和寿命至关重要。文章提出一种基于... 随着新能源汽车行业的迅猛发展,电驱系统作为其核心部件,其性能和可靠性对整车性能有着决定性的影响。DC-Link电容作为电驱系统中的关键组件,负责平滑电压波动和滤除高频噪声,其热管理对于系统的稳定性和寿命至关重要。文章提出一种基于MATLAB、Q3D和Icepak多软件联合的电驱系统DCLink电容热仿真分析方法。首先,利用MATLAB进行电路仿真,确定电容的工作状态和卷芯损耗参数;然后,通过Q3D软件进行电磁场仿真,获取电容铜排的电磁损耗;最后,结合Icepak进行热仿真,分析电容的温度分布和热流路径。本研究不仅为DC-Link电容的选型提供理论依据,而且为电驱系统的热管理提供有效的解决方案。 展开更多
关键词 电驱系统 dc-link电容 热仿真 MATLAB Q3D Icepak
在线阅读 下载PDF
Porous highly conductive PEDOT film for high-performance supercapacitors
19
作者 Wanying Zhang Zhen Su +11 位作者 Bei Qi Wentao Wang Shisong Nie Yingzhi Jin Jiaxing Song Lin Hu Xinxing Yin Weihua Ning Xiaoming Yang Hao Wang Zaifang Li Liang Huang 《Nano Materials Science》 2025年第3期392-399,共8页
Thick and highly conductive poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate films with ideal porous structure are fulfilling as electrodes for supercapacitors.However,the homogeneous micro-structure without the... Thick and highly conductive poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate films with ideal porous structure are fulfilling as electrodes for supercapacitors.However,the homogeneous micro-structure without the aid of templates or composite presents a significant obstacle,due to the intrinsic softness of the dominant PSS component.In this study,we have successfully developed a porous configuration by employing a solvothermal approach with ethylene glycol(EG)as the solvent.The synergistic action of elevated pressure and temperature was crucial in prompting EG to tailor the microstructure of the PEDOT:PSS films by removing non-conductive PSS chains and improving PEDOT crystallinity,and the formation of a porous network.The resulting porous PEDOT:PSS films exhibited a high conductivity of 1644 S cm^(-1)and achieved a volumetric capacitance record of 270 F cm^(-3),markedly exceeding previous records.The flexible all-solid-state supercapacitor assembled by the films had an outstanding volumetric capacitance of 97.8 F cm^(-3)and an energy density of 8.7 mWh cm^(-3),which is best one for pure PEDOT:PSS-based supercapacitors.Grazing-incidence wide-angle X-ray scattering,X-ray photoelectron spectroscopy,and other characterizations were carried out to characterize the structure evolution.This work offers an effective novel method for conducting polymer morphology control and promotes PEDOT:PSS applications in energy storage field. 展开更多
关键词 PEDOT POROUS Molecular arrangement High capacitance High energy density
在线阅读 下载PDF
Highly Efficient and Stable Capacitive Deionization Based on a Flower-Like Conjugated Polymer with Double Active-Sites
20
作者 Zhiyun Zhuang Lei Sun +9 位作者 Yueheng Tao Jian Shao Jinggang Yang Peng Yu Huanxu Chen Jianhua Zhou Jing Xiao Kangyong Yin Minjie Shi Peng Xiao 《Energy & Environmental Materials》 2025年第3期244-252,共9页
Hybrid capacitive deionization(HCDI)shows promise for desalinating brackish and saline water by utilizing the pseudocapacitive properties of faradaic electrodes.Organic materials,with their low environmental impact an... Hybrid capacitive deionization(HCDI)shows promise for desalinating brackish and saline water by utilizing the pseudocapacitive properties of faradaic electrodes.Organic materials,with their low environmental impact and adaptable structures,are attractive for this application.However,their scarcity of active sites and tendency to dissolve in water-based solutions remain significant challenges.Herein,we synthesized a polynaphthalenequinoneimine(PCON)polymer with stable long-range ordered framework and rough three-dimensional floral surface morphology,along with high-density active sites provided by C=O and C=N functional groups,enabling efficient redox reactions and achieving a high Na^(+)capture capability.The synthesized PCON polymer showcases outstanding electroadsorption characteristics and notable structural robustness,attaining an impressive specific capacitance of 500.45 F g^(-1) at 1 A g^(-1) and maintaining 86.1%of its original capacitance following 5000 charge–discharge cycles.Benefiting from the superior pseudocapacitive properties of the PCON polymer,we have developed an HCDI system that not only exhibits exceptional salt removal capacity of 100.8 mg g^(-1) and a remarkable rapid average removal rate of 3.36 mg g^(-1) min-1 but also maintains 97%of its initial desalination capacity after 50 cycles,thereby distinguishing itself in the field of state-ofthe-art desalination technologies with its comprehensive performance that significantly surpasses reported organic capacitive deionization materials.Prospectively,the synthesis paradigm of the double active-sites PCON polymer may be extrapolated to other organic electrodes,heralding new avenues for the design of high-performance desalination systems. 展开更多
关键词 capacitive deionization electro-adsorption Na+removal organic compound pseudocapacitive electrode
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部