Renewable electricity options, such as fuel cells, solar photovoltaic,and batteries, are being integrated, which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dcco...Renewable electricity options, such as fuel cells, solar photovoltaic,and batteries, are being integrated, which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dcconverter is suggested by the use of coupled inductor techniques. Since itcompensates for mismatches in photovoltaic devices and allows for separateand continuous power flow from these sources. The proposed converter hasthe benefits of high gain, a low ripple in the output voltage, minimal stressvoltage across the power semiconductor devices, a low ripple in inductorcurrent, high power density, and high efficiency. Soft-switching techniquesare used to realize that the reverse recovery issue of the diodes is moderated, the leakage energy is reused, and no new scheme is appropriated. Toreduce conduction losses, minimum voltage rating MOSFETs with a low ONresistance can be utilized. The converter can supply the required power fromthe load in the absence of one or two resources. Furthermore, due to the highgain of boosting voltage, the converter works in an Adaptive Neuro-FuzzyInference System (ANFIS). The operation principle, steady-state analysis ofthe proposed converter, is given and simulated utilizing MATLAB/Simulinksimulation software.展开更多
In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltag...In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.展开更多
Complex circuitry of electronic infrastructure of compact micro-grids with multiple renewable energy sources feeding the loads using parallel operation of inverters acts as a deterrent in developing such systems. This...Complex circuitry of electronic infrastructure of compact micro-grids with multiple renewable energy sources feeding the loads using parallel operation of inverters acts as a deterrent in developing such systems. This paper deals with applicable techniques reducing the driving circuits in parallel power inverters used in micro-grid system (MGS), mainly focused on the distributed generation (DG) in islanded mode. The method introduced in this paper, gives a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. DC micro-grids are proposed and researched for the good connection with DC output type sources such as photovoltaic (PV), fuel cell, and secondary battery. In this paper, the electronic infrastructure of micro-grid is expressed. Then discussed the reasons for its complexity and the possibility of reducing the elements of electronic circuits are investigated. The reason for this is in order to compact DC micro-grid system for electrification to places like villages. Digital Simulation in Matlab Simulink is used to show the effectiveness of this novel driver topology for parallel operating inverters (NDTPI).展开更多
In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results i...In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results in increased leakage current,decreased breakdown voltage,and lower nonlinearity,ultimately compromising their protective performance.To investigate the evolution in electrical properties during DC aging,this work developed a finite element model based on Voronoi networks and conducted accelerated aging tests on commercial varistors.Throughout the aging process,current-voltage characteristics and Schottky barrier parameters were measured and analyzed.The results indicate that when subjected to constant voltage,current flows through regions with larger grain sizes,forming discharge channels.As aging progresses,the current focus increases on these channels,leading to a decline in the varistor’s overall performance.Furthermore,analysis of the Schottky barrier parameters shows that the changes in electrical performance during aging are non-monotonic.These findings offer theoretical support for understanding the aging mechanisms and condition assessment of modern stable ZnO varistors.展开更多
To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hyb...To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.展开更多
This paper investigates stability problem of DC micro-grid under disturbance.Tracking control based on the sampled H∞controller is designed for solving such problem.First,it sets up the model of the DC micro-grid wit...This paper investigates stability problem of DC micro-grid under disturbance.Tracking control based on the sampled H∞controller is designed for solving such problem.First,it sets up the model of the DC micro-grid with the energy storage unit.Next,it presents the model for the closed-loop control system and the design method for the sampled state feedback controller.Then,it gives the sampled H∞performance analysis by considering the sampled quantisation error as an external disturbance term of the system.It derives one sufficient condition for stabilisation of the DC micro-grid based on linear matrix inequalities and Lyapunov theory.Finally,simulations verify the validity of our results.展开更多
单级式双有源桥(dual active bridge,DAB)DC/AC变换器控制自由度多,变压器匝比、漏感、开关频率等参数相互耦合,导致变换器效率优化面临多重制约。该文分析变压器匝比、漏感与软开关范围、漏感电流有效值、漏感电流峰值之间的约束关系,...单级式双有源桥(dual active bridge,DAB)DC/AC变换器控制自由度多,变压器匝比、漏感、开关频率等参数相互耦合,导致变换器效率优化面临多重制约。该文分析变压器匝比、漏感与软开关范围、漏感电流有效值、漏感电流峰值之间的约束关系,提出直接表征DAB-DC/AC变换器效率的物理量:效率敏感因子。通过研究效率敏感因子对系统损耗的影响机理,实现变换器效率最优的硬件参数设计,为多参数耦合的单级式DAB-DC/AC变换器效率优化提供理论指导。最后通过一台450 W样机验证所提理论的正确性。展开更多
文摘Renewable electricity options, such as fuel cells, solar photovoltaic,and batteries, are being integrated, which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dcconverter is suggested by the use of coupled inductor techniques. Since itcompensates for mismatches in photovoltaic devices and allows for separateand continuous power flow from these sources. The proposed converter hasthe benefits of high gain, a low ripple in the output voltage, minimal stressvoltage across the power semiconductor devices, a low ripple in inductorcurrent, high power density, and high efficiency. Soft-switching techniquesare used to realize that the reverse recovery issue of the diodes is moderated, the leakage energy is reused, and no new scheme is appropriated. Toreduce conduction losses, minimum voltage rating MOSFETs with a low ONresistance can be utilized. The converter can supply the required power fromthe load in the absence of one or two resources. Furthermore, due to the highgain of boosting voltage, the converter works in an Adaptive Neuro-FuzzyInference System (ANFIS). The operation principle, steady-state analysis ofthe proposed converter, is given and simulated utilizing MATLAB/Simulinksimulation software.
基金supported by the National Key R&D Program of China (2018AAA0101701)the National Natural Science Foundation of China (62073220,61833012)。
文摘In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.
文摘Complex circuitry of electronic infrastructure of compact micro-grids with multiple renewable energy sources feeding the loads using parallel operation of inverters acts as a deterrent in developing such systems. This paper deals with applicable techniques reducing the driving circuits in parallel power inverters used in micro-grid system (MGS), mainly focused on the distributed generation (DG) in islanded mode. The method introduced in this paper, gives a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. DC micro-grids are proposed and researched for the good connection with DC output type sources such as photovoltaic (PV), fuel cell, and secondary battery. In this paper, the electronic infrastructure of micro-grid is expressed. Then discussed the reasons for its complexity and the possibility of reducing the elements of electronic circuits are investigated. The reason for this is in order to compact DC micro-grid system for electrification to places like villages. Digital Simulation in Matlab Simulink is used to show the effectiveness of this novel driver topology for parallel operating inverters (NDTPI).
文摘In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results in increased leakage current,decreased breakdown voltage,and lower nonlinearity,ultimately compromising their protective performance.To investigate the evolution in electrical properties during DC aging,this work developed a finite element model based on Voronoi networks and conducted accelerated aging tests on commercial varistors.Throughout the aging process,current-voltage characteristics and Schottky barrier parameters were measured and analyzed.The results indicate that when subjected to constant voltage,current flows through regions with larger grain sizes,forming discharge channels.As aging progresses,the current focus increases on these channels,leading to a decline in the varistor’s overall performance.Furthermore,analysis of the Schottky barrier parameters shows that the changes in electrical performance during aging are non-monotonic.These findings offer theoretical support for understanding the aging mechanisms and condition assessment of modern stable ZnO varistors.
基金supported by Science and Technology Project of the headquarters of the State Grid Corporation of China(No.5500-202324492A-3-2-ZN).
文摘To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.
基金supported by the Natural Science Foundation of China[grant numbers 61673188,61603212,61761130081 and 61876097]the Foundation for Innovative Research Groups of Hubei Province of China[grant number 2017CFA005]+1 种基金the Fundamental Research Funds for the Central Universities of HUST[grant number 2018KFYXKJC051]the Research Funds for Hubei Key Laboratory of Applied Mathematics(Hubei University).
文摘This paper investigates stability problem of DC micro-grid under disturbance.Tracking control based on the sampled H∞controller is designed for solving such problem.First,it sets up the model of the DC micro-grid with the energy storage unit.Next,it presents the model for the closed-loop control system and the design method for the sampled state feedback controller.Then,it gives the sampled H∞performance analysis by considering the sampled quantisation error as an external disturbance term of the system.It derives one sufficient condition for stabilisation of the DC micro-grid based on linear matrix inequalities and Lyapunov theory.Finally,simulations verify the validity of our results.
文摘单级式双有源桥(dual active bridge,DAB)DC/AC变换器控制自由度多,变压器匝比、漏感、开关频率等参数相互耦合,导致变换器效率优化面临多重制约。该文分析变压器匝比、漏感与软开关范围、漏感电流有效值、漏感电流峰值之间的约束关系,提出直接表征DAB-DC/AC变换器效率的物理量:效率敏感因子。通过研究效率敏感因子对系统损耗的影响机理,实现变换器效率最优的硬件参数设计,为多参数耦合的单级式DAB-DC/AC变换器效率优化提供理论指导。最后通过一台450 W样机验证所提理论的正确性。