1.5MW Ion Cyclotron Wave Heating system was developed, the transmitter and the antenna both have their ground loops, which will severely perturb the system’s normal operation. To avoid perturbation, a DC break was de...1.5MW Ion Cyclotron Wave Heating system was developed, the transmitter and the antenna both have their ground loops, which will severely perturb the system’s normal operation. To avoid perturbation, a DC break was designed. The S parameter and the VSWR (voltage standing wave ratio) of incident port were calculated; the thermal effect caused by conductor loss and dielectric loss was analyzed.展开更多
Fast mechanical switches(FMSs)are critical components of DC circuit breakers(DCCBs),which require the switch action time to break to a sufficient distance within 3 ms in the DC line breaking scenario,while ensuring a ...Fast mechanical switches(FMSs)are critical components of DC circuit breakers(DCCBs),which require the switch action time to break to a sufficient distance within 3 ms in the DC line breaking scenario,while ensuring a long service life.The breaking mechanism significantly affects the current interruption capability of DCCBs.The operation of the repulsion mechanism,along with the morphology of the arc and its transformation within the interrupter chamber,collectively influence the breaking performance of the FMSs.This paper presents a comprehensive analysis of the FMSs,which serves as the pivotal component of controlled resonance combination circuit breakers(CRCBs).This study establishes a multi physics coupling simulation analysis method based on the equivalent circuit of repulsion mechanism discharge,combined with electromagnetic and solid mechanics fields.By constructing a full cycle magnetohydrodynamic particle arc(MHP)model and using a combined simulation of Finite Element joint model(FEJM),the evolution law of arc characteristics during the superimposed current interruption process was systematically explored.The focus was on analysing the physical process of the zero zone of the superimposed arc,the multi physics field coupling relationship of the arc,and the interaction mechanism with external characteristic parameters.Further combining with optimisation design methods,the effectiveness of the model was verified through experiments,FEJM provides comprehensive technical support for effectively reflecting the stress issues of core components during the breaking process of FMS and can provide accurate theoretical references for the optimisation design of mechanical motion components in FMS.It also accurately represents the arc extinguishing process during the breaking of FMS and provides a convenient method for the selection and design of circuit parameters for the entire circuit breaker.展开更多
基金The project supported by the National Science Foundation of China (No. 10274089) National High Technology Program of China
文摘1.5MW Ion Cyclotron Wave Heating system was developed, the transmitter and the antenna both have their ground loops, which will severely perturb the system’s normal operation. To avoid perturbation, a DC break was designed. The S parameter and the VSWR (voltage standing wave ratio) of incident port were calculated; the thermal effect caused by conductor loss and dielectric loss was analyzed.
基金State Grid Corporation Headquarters Science and Technology Project,Grant/Award Number:5500-20220110A-1-1-ZN。
文摘Fast mechanical switches(FMSs)are critical components of DC circuit breakers(DCCBs),which require the switch action time to break to a sufficient distance within 3 ms in the DC line breaking scenario,while ensuring a long service life.The breaking mechanism significantly affects the current interruption capability of DCCBs.The operation of the repulsion mechanism,along with the morphology of the arc and its transformation within the interrupter chamber,collectively influence the breaking performance of the FMSs.This paper presents a comprehensive analysis of the FMSs,which serves as the pivotal component of controlled resonance combination circuit breakers(CRCBs).This study establishes a multi physics coupling simulation analysis method based on the equivalent circuit of repulsion mechanism discharge,combined with electromagnetic and solid mechanics fields.By constructing a full cycle magnetohydrodynamic particle arc(MHP)model and using a combined simulation of Finite Element joint model(FEJM),the evolution law of arc characteristics during the superimposed current interruption process was systematically explored.The focus was on analysing the physical process of the zero zone of the superimposed arc,the multi physics field coupling relationship of the arc,and the interaction mechanism with external characteristic parameters.Further combining with optimisation design methods,the effectiveness of the model was verified through experiments,FEJM provides comprehensive technical support for effectively reflecting the stress issues of core components during the breaking process of FMS and can provide accurate theoretical references for the optimisation design of mechanical motion components in FMS.It also accurately represents the arc extinguishing process during the breaking of FMS and provides a convenient method for the selection and design of circuit parameters for the entire circuit breaker.