Vehicle data is one of the important sources of traffic accident digital forensics.We propose a novel method using long short-term memory-deep belief network by binary encoding(LSTM-BiDBN)controller area network ident...Vehicle data is one of the important sources of traffic accident digital forensics.We propose a novel method using long short-term memory-deep belief network by binary encoding(LSTM-BiDBN)controller area network identifier(CAN ID)to extract the event sequence of CAN IDs and the semantic of CAN IDs themselves.Instead of detecting attacks only aimed at a specific CAN ID,the proposed method fully considers the potential interaction between electronic control units.By this means,we can detect whether the vehicle has been invaded by the outside,to online determine the responsible party of the accident.We use our LSTM-BiDBN to distinguish attack-free and abnormal situations on CAN-intrusion-dataset.Experimental results show that our proposed method is more effective in identifying anomalies caused by denial of service attack,fuzzy attack and impersonation attack with an accuracy value of 97.02%,a false-positive rate of 6.09%,and a false-negative rate of 1.94%compared with traditional methods.展开更多
遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地...遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地进行特征提取,从而发掘数据在时间与空间上的规律,进而提高分类的准确性.深度信念网络(deep belief network,DBN)是一种得到广泛研究与应用的深度学习模型,它结合了无监督学习和有监督学习的优点,对高维数据具有较好的分类能力.提出一种基于DBN模型的遥感图像分类方法,并利用RADARSAT-2卫星6d的极化合成孔径雷达(synthetic aperture radar,SAR)图像进行了验证.实验表明,与支持向量机(SVM)及传统的神经网络(NN)方法相比,基于DBN模型的方法可以取得更好的分类效果.展开更多
基金the National Key R&D Program of China(No.2017YFA60700602)。
文摘Vehicle data is one of the important sources of traffic accident digital forensics.We propose a novel method using long short-term memory-deep belief network by binary encoding(LSTM-BiDBN)controller area network identifier(CAN ID)to extract the event sequence of CAN IDs and the semantic of CAN IDs themselves.Instead of detecting attacks only aimed at a specific CAN ID,the proposed method fully considers the potential interaction between electronic control units.By this means,we can detect whether the vehicle has been invaded by the outside,to online determine the responsible party of the accident.We use our LSTM-BiDBN to distinguish attack-free and abnormal situations on CAN-intrusion-dataset.Experimental results show that our proposed method is more effective in identifying anomalies caused by denial of service attack,fuzzy attack and impersonation attack with an accuracy value of 97.02%,a false-positive rate of 6.09%,and a false-negative rate of 1.94%compared with traditional methods.