期刊文献+
共找到574篇文章
< 1 2 29 >
每页显示 20 50 100
Design of a Private Cloud Platform for Distributed Logging Big Data Based on a Unified Learning Model of Physics and Data
1
作者 Cheng Xi Fu Haicheng Tursyngazy Mahabbat 《Applied Geophysics》 2025年第2期499-510,560,共13页
Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of th... Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity. 展开更多
关键词 Unified logging learning model logging big data private cloud machine learning
在线阅读 下载PDF
A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm
2
作者 Zhe Wang Renchu He Jian Long 《Chinese Journal of Chemical Engineering》 2025年第5期182-199,共18页
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie... The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation. 展开更多
关键词 Integrated learning algorithm data intervals clustering Feature selection Application of artificial intelligence in distillation industry data-driven modelling
在线阅读 下载PDF
Variogram modelling optimisation using genetic algorithm and machine learning linear regression:application for Sequential Gaussian Simulations mapping
3
作者 André William Boroh Alpha Baster Kenfack Fokem +2 位作者 Martin Luther Mfenjou Firmin Dimitry Hamat Fritz Mbounja Besseme 《Artificial Intelligence in Geosciences》 2025年第1期177-190,共14页
The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of... The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of geostatistical analysis,particularly in mineral exploration.The study combines GA and machine learning to optimise variogram parameters,including range,sill,and nugget,by minimising the root mean square error(RMSE)and maximising the coefficient of determination(R^(2)).The experimental variograms were computed and modelled using theoretical models,followed by optimisation via evolutionary algorithms.The method was applied to gravity data from the Ngoura-Batouri-Kette mining district in Eastern Cameroon,covering 141 data points.Sequential Gaussian Simulations(SGS)were employed for predictive mapping to validate simulated results against true values.Key findings show variograms with ranges between 24.71 km and 49.77 km,opti-mised RMSE and R^(2) values of 11.21 mGal^(2) and 0.969,respectively,after 42 generations of GA optimisation.Predictive mapping using SGS demonstrated that simulated values closely matched true values,with the simu-lated mean at 21.75 mGal compared to the true mean of 25.16 mGal,and variances of 465.70 mGal^(2) and 555.28 mGal^(2),respectively.The results confirmed spatial variability and anisotropies in the N170-N210 directions,consistent with prior studies.This work presents a novel integration of GA and machine learning for variogram modelling,offering an automated,efficient approach to parameter estimation.The methodology significantly enhances predictive geostatistical models,contributing to the advancement of mineral exploration and improving the precision and speed of decision-making in the petroleum and mining industries. 展开更多
关键词 Variogram modelling Genetic algorithm(GA) Machine learning Gravity data Mineral exploration
在线阅读 下载PDF
The Interdisciplinary Research of Big Data and Wireless Channel: A Cluster-Nuclei Based Channel Model 被引量:24
4
作者 Jianhua Zhang 《China Communications》 SCIE CSCD 2016年第S2期14-26,共13页
Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big... Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big volume feature,considering the massive antennas,huge bandwidth and versatile application scenarios.This article firstly presents a comprehensive survey of channel measurement and modeling research for mobile communication,especially for 5th Generation(5G) and beyond.Considering the big data research progress,then a cluster-nuclei based model is proposed,which takes advantages of both the stochastical model and deterministic model.The novel model has low complexity with the limited number of cluster-nuclei while the cluster-nuclei has the physical mapping to real propagation objects.Combining the channel properties variation principles with antenna size,frequency,mobility and scenario dug from the channel data,the proposed model can be expanded in versatile application to support future mobile research. 展开更多
关键词 channel model big data 5G massive MIMO machine learning CLUSTER
在线阅读 下载PDF
Foundation Study on Wireless Big Data: Concept, Mining, Learning and Practices 被引量:10
5
作者 Jinkang Zhu Chen Gong +2 位作者 Sihai Zhang Ming Zhao Wuyang Zhou 《China Communications》 SCIE CSCD 2018年第12期1-15,共15页
Facing the development of future 5 G, the emerging technologies such as Internet of things, big data, cloud computing, and artificial intelligence is enhancing an explosive growth in data traffic. Radical changes in c... Facing the development of future 5 G, the emerging technologies such as Internet of things, big data, cloud computing, and artificial intelligence is enhancing an explosive growth in data traffic. Radical changes in communication theory and implement technologies, the wireless communications and wireless networks have entered a new era. Among them, wireless big data(WBD) has tremendous value, and artificial intelligence(AI) gives unthinkable possibilities. However, in the big data development and artificial intelligence application groups, the lack of a sound theoretical foundation and mathematical methods is regarded as a real challenge that needs to be solved. From the basic problem of wireless communication, the interrelationship of demand, environment and ability, this paper intends to investigate the concept and data model of WBD, the wireless data mining, the wireless knowledge and wireless knowledge learning(WKL), and typical practices examples, to facilitate and open up more opportunities of WBD research and developments. Such research is beneficial for creating new theoretical foundation and emerging technologies of future wireless communications. 展开更多
关键词 WIRELESS big data data model data MINING WIRELESS KNOWLEDGE KNOWLEDGE learning future WIRELESS communications
在线阅读 下载PDF
Modeling of Optimal Deep Learning Based Flood Forecasting Model Using Twitter Data 被引量:1
6
作者 G.Indra N.Duraipandian 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1455-1470,共16页
Aflood is a significant damaging natural calamity that causes loss of life and property.Earlier work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit prop... Aflood is a significant damaging natural calamity that causes loss of life and property.Earlier work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit property damage caused byfloods.The massive amount of data generated by social media platforms such as Twitter opens the door toflood analysis.Because of the real-time nature of Twitter data,some government agencies and authorities have used it to track natural catastrophe events in order to build a more rapid rescue strategy.However,due to the shorter duration of Tweets,it is difficult to construct a perfect prediction model for determiningflood.Machine learning(ML)and deep learning(DL)approaches can be used to statistically developflood prediction models.At the same time,the vast amount of Tweets necessitates the use of a big data analytics(BDA)tool forflood prediction.In this regard,this work provides an optimal deep learning-basedflood forecasting model with big data analytics(ODLFF-BDA)based on Twitter data.The suggested ODLFF-BDA technique intends to anticipate the existence offloods using tweets in a big data setting.The ODLFF-BDA technique comprises data pre-processing to convert the input tweets into a usable format.In addition,a Bidirectional Encoder Representations from Transformers(BERT)model is used to generate emotive contextual embed-ding from tweets.Furthermore,a gated recurrent unit(GRU)with a Multilayer Convolutional Neural Network(MLCNN)is used to extract local data and predict theflood.Finally,an Equilibrium Optimizer(EO)is used tofine-tune the hyper-parameters of the GRU and MLCNN models in order to increase prediction performance.The memory usage is pull down lesser than 3.5 MB,if its compared with the other algorithm techniques.The ODLFF-BDA technique’s performance was validated using a benchmark Kaggle dataset,and thefindings showed that it outperformed other recent approaches significantly. 展开更多
关键词 big data analytics predictive models deep learning flood prediction twitter data hyperparameter tuning
在线阅读 下载PDF
Research on a Fog Computing Architecture and BP Algorithm Application for Medical Big Data
7
作者 Baoling Qin 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期255-267,共13页
Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficie... Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficiency of medical diagnosis.And with the wide application of the Internet of Things and Big Data in the medical field,medical Big Data is increasing in geometric magnitude resulting in cloud service overload,insufficient storage,communication delay,and network congestion.In order to solve these medical and network problems,a medical big-data-oriented fog computing architec-ture and BP algorithm application are proposed,and its structural advantages and characteristics are studied.This architecture enables the medical Big Data generated by medical edge devices and the existing data in the cloud service center to calculate,compare and analyze the fog node through the Internet of Things.The diagnosis results are designed to reduce the business processing delay and improve the diagnosis effect.Considering the weak computing of each edge device,the artificial intelligence BP neural network algorithm is used in the core computing model of the medical diagnosis system to improve the system computing power,enhance the medical intelligence-aided decision-making,and improve the clinical diagnosis and treatment efficiency.In the application process,combined with the characteristics of medical Big Data technology,through fog architecture design and Big Data technology integration,we could research the processing and analysis of heterogeneous data of the medical diagnosis system in the context of the Internet of Things.The results are promising:The medical platform network is smooth,the data storage space is sufficient,the data processing and analysis speed is fast,the diagnosis effect is remarkable,and it is a good assistant to doctors’treatment effect.It not only effectively solves the problem of low clinical diagnosis,treatment efficiency and quality,but also reduces the waiting time of patients,effectively solves the contradiction between doctors and patients,and improves the medical service quality and management level. 展开更多
关键词 Medical big data IOT fog computing distributed computing BP algorithm model
在线阅读 下载PDF
A Survey of Machine Learning for Big Data Processing
8
作者 Reem Almutiri Sarah Alhabeeb +1 位作者 Sarah Alhumud Rehan Ullah Khan 《Journal on Big Data》 2022年第2期97-111,共15页
Today’s world is a data-driven one,with data being produced in vast amounts as a result of the rapid growth of technology that permeates every aspect of our lives.New data processing techniques must be developed and ... Today’s world is a data-driven one,with data being produced in vast amounts as a result of the rapid growth of technology that permeates every aspect of our lives.New data processing techniques must be developed and refined over time to gain meaningful insights from this vast continuous volume of produced data in various forms.Machine learning technologies provide promising solutions and potential methods for processing large quantities of data and gaining value from it.This study conducts a literature review on the application of machine learning techniques in big data processing.It provides a general overview of machine learning algorithms and techniques,a brief introduction to big data,and a discussion of related works that have used machine learning techniques in a variety of sectors to process big amounts of data.The study also discusses the challenges and issues associated with the usage of machine learning for big data. 展开更多
关键词 Machine learning big data PROCESSING algorithmS
在线阅读 下载PDF
Optimization of convolutional neural networks for predicting water pollutants using spectral data in the middle and lower reaches of the Yangtze River Basin,China
9
作者 ZHANG Guohao LI Song +3 位作者 WANG Cailing WANG Hongwei YU Tao DAI Xiaoxu 《Journal of Mountain Science》 2025年第8期2851-2869,共19页
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t... Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control. 展开更多
关键词 Water pollutants Convolutional neural networks data augmentation Optimization algorithms model evaluation methods Deep learning
原文传递
Deep Learning Based Optimal Multimodal Fusion Framework for Intrusion Detection Systems for Healthcare Data 被引量:1
10
作者 Phong Thanh Nguyen Vy Dang Bich Huynh +3 位作者 Khoa Dang Vo Phuong Thanh Phan Mohamed Elhoseny Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第3期2555-2571,共17页
Data fusion is a multidisciplinary research area that involves different domains.It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcar... Data fusion is a multidisciplinary research area that involves different domains.It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcare sources.The generation of huge quantity of data from medical devices resulted in the formation of big data during which data fusion techniques become essential.Securing medical data is a crucial issue of exponentially-pacing computing world and can be achieved by Intrusion Detection Systems(IDS).In this regard,since singularmodality is not adequate to attain high detection rate,there is a need exists to merge diverse techniques using decision-based multimodal fusion process.In this view,this research article presents a new multimodal fusion-based IDS to secure the healthcare data using Spark.The proposed model involves decision-based fusion model which has different processes such as initialization,pre-processing,Feature Selection(FS)and multimodal classification for effective detection of intrusions.In FS process,a chaotic Butterfly Optimization(BO)algorithmcalled CBOA is introduced.Though the classic BO algorithm offers effective exploration,it fails in achieving faster convergence.In order to overcome this,i.e.,to improve the convergence rate,this research work modifies the required parameters of BO algorithm using chaos theory.Finally,to detect intrusions,multimodal classifier is applied by incorporating three Deep Learning(DL)-based classification models.Besides,the concepts like Hadoop MapReduce and Spark were also utilized in this study to achieve faster computation of big data in parallel computation platform.To validate the outcome of the presented model,a series of experimentations was performed using the benchmark NSLKDDCup99 Dataset repository.The proposed model demonstrated its effective results on the applied dataset by offering the maximum accuracy of 99.21%,precision of 98.93%and detection rate of 99.59%.The results assured the betterment of the proposed model. 展开更多
关键词 big data data fusion deep learning intrusion detection bio-inspired algorithm SPARK
在线阅读 下载PDF
基于DBN深度学习算法的一站式诉求响应预测方法
11
作者 赵睿 李伟 +2 位作者 王宇飞 李卫卫 杨继芳 《微型电脑应用》 2024年第4期135-139,共5页
为了提高诉求响应的速度,提出了基于机器学习的一站式诉求响应技术。在物理架构中采用事故数据记录器(ADR)服务器和数字化X线摄影术(DR)运行管理,实现一站式诉求响应;利用建模工具来构建例图进行描述诉求响应的运行细节,通过逻辑架构的... 为了提高诉求响应的速度,提出了基于机器学习的一站式诉求响应技术。在物理架构中采用事故数据记录器(ADR)服务器和数字化X线摄影术(DR)运行管理,实现一站式诉求响应;利用建模工具来构建例图进行描述诉求响应的运行细节,通过逻辑架构的感知层、网络层和应用层,实现了对一站式诉求响应的逻辑分析;利用机器学习预测方式和深度置信网络(DBN),实现一站式诉求响应的预测。实验表明,在进行对响应的速度进行测试时,所提出的系统响应所需时间最少为1.1 s,在进行对响应预测的准确性测试时,响应预测的准确性最高为97%。 展开更多
关键词 机器学习 诉求响应 ADR 建模 dbn深度学习算法
在线阅读 下载PDF
基于弱监督学习的Text-to-SQL自动生成方法
12
作者 向宁 《无线电通信技术》 北大核心 2025年第3期520-529,共10页
结构化查询语言(Structured Query Language,SQL)生成模型对于非专业人员检索情报至关重要。通常训练SQL生成模型需要使用标注的SQL以及对应的自然语言问题,现有SQL生成模型难以推广到不同的训练数据。根据问题分解半结构化表示(Decompo... 结构化查询语言(Structured Query Language,SQL)生成模型对于非专业人员检索情报至关重要。通常训练SQL生成模型需要使用标注的SQL以及对应的自然语言问题,现有SQL生成模型难以推广到不同的训练数据。根据问题分解半结构化表示(Decomposition Semi-structed Representation,DSR),提出一种基于弱监督学习的Text-to-SQL自动生成方法(Text-to-SQL Automatic Generation Method Based on Weakly Supervised Learning,TS-WSL),给定问题、DSR和执行答案,能够自动合成用于训练Text-to-SQL模型的SQL查询。使用DSR解析器对问题进行解析,通过短语链接、连接路径推理以及SQL映射过程生成候选SQL;使用候选SQL搜索选择最佳的SQL查询;使用生成的SQL数据对T5模型进行训练。在5个基准数据集上进行实验,结果表明所提方法比基于注释SQL数据集上训练的模型更具泛化性,在无域内DSR场景下,仍然可以达到完全监督模型约90%的性能。 展开更多
关键词 结构化查询语言生成模型 分解半结构化表示 弱监督学习 大模型
在线阅读 下载PDF
基于时空大数据的工程建设项目智慧选址系统建设研究
13
作者 邓潇潇 刘彦 刘莉 《自然资源信息化》 2025年第5期10-17,共8页
在生态文明建设背景下,如何协调建设项目选址与国土空间管控要求,已成为土地要素保障的关键课题。本文系统梳理了工程建设项目类型及其选址影响因素,建立了融合国土空间管控要求的工程建设项目智慧选址技术指标体系,构建了基于模型库、... 在生态文明建设背景下,如何协调建设项目选址与国土空间管控要求,已成为土地要素保障的关键课题。本文系统梳理了工程建设项目类型及其选址影响因素,建立了融合国土空间管控要求的工程建设项目智慧选址技术指标体系,构建了基于模型库、知识库的建设项目选址模型及节地分析模型,研发出具有量化分析功能的智慧选址信息系统。该系统应用于湖南省土地管理工作,使建设项目土地要素保障效率提高70%、审批周期缩短50%。本研究提出的技术方法有效解决了建设项目选址与国土空间管控的协同难题,为生态文明建设背景下的土地资源优化配置提供了可推广的解决方案,对提高土地要素保障效率具有重要实践价值。 展开更多
关键词 时空大数据 工程建设项目 智慧选址 算法模型 信息系统
在线阅读 下载PDF
一种基于AI大数据的用户满意度预测算法
14
作者 周文红 孙军亮 +2 位作者 许妍青 杨嘉忱 孙凡晰 《移动信息》 2025年第2期199-201,共3页
随着大数据技术的发展和人工智能应用的广泛化,用户满意度预测已成为运营商解决信号差和网络质量问题,减少用户投诉并获取竞争优势的关键手段.文中提出了一种结合机器学习技术的用户满意度预测算法,通过分析用户行为数据和反馈,构建了... 随着大数据技术的发展和人工智能应用的广泛化,用户满意度预测已成为运营商解决信号差和网络质量问题,减少用户投诉并获取竞争优势的关键手段.文中提出了一种结合机器学习技术的用户满意度预测算法,通过分析用户行为数据和反馈,构建了一个高精度的预测模型.通过实验验证,该模型在多个数据集上表现出优越的预测准确性和良好的泛化能力.该算法的实现,对于理解用户需求和改进服务质量具有重要意义. 展开更多
关键词 大数据 用户满意度 预测算法 机器学习
在线阅读 下载PDF
基于隐私ASE加密算法和宽度学习的多模态大数据安全融合方法
15
作者 庄彦 马琳娟 《贵阳学院学报(自然科学版)》 2025年第2期33-37,共5页
开放网络容易受到攻击,降低了多模态大数据安全融合的准确性。为了解决这个问题,提出了一种基于隐私ASE加密算法和宽度学习的多模态大数据安全融合方法。首先,定义了多模态数据的各种类型,定义了相应的属性,构造了多模态大数据安全融合... 开放网络容易受到攻击,降低了多模态大数据安全融合的准确性。为了解决这个问题,提出了一种基于隐私ASE加密算法和宽度学习的多模态大数据安全融合方法。首先,定义了多模态数据的各种类型,定义了相应的属性,构造了多模态大数据安全融合的关键树。其次,根据大数据安全融合的结果,采用宽度学习技术进行融合处理,生成密钥协议,划分正常节点和恶意节点,消除恶意节点信息,计算多模态大数据信息融合的权重。最后,设置约束条件,得到多模态大数据信息安全融合的结果。实验结果表明,该方法管理的相邻数据相关系数较低,平均相关系数为0.037,具有较高的数据安全性。 展开更多
关键词 私有ASE加密算法 宽度学习 多模态大数据
在线阅读 下载PDF
联邦学习框架下的大数据隐私保护算法研究
16
作者 颜廷法 《新乡学院学报》 2025年第3期53-57,67,共6页
在当前大数据时代,数据隐私保护问题日益凸显,对信息安全构成了严峻挑战。针对大数据环境下的数据隐私泄露问题,提出了一种创新的联邦学习框架下的隐私保护算法。通过Shamir门限秘密共享方案,实现了模型参数的安全共享,同时结合横向与... 在当前大数据时代,数据隐私保护问题日益凸显,对信息安全构成了严峻挑战。针对大数据环境下的数据隐私泄露问题,提出了一种创新的联邦学习框架下的隐私保护算法。通过Shamir门限秘密共享方案,实现了模型参数的安全共享,同时结合横向与纵向联邦学习策略,构建了一个既灵活又高效的隐私保护模型。在模型训练过程中,采用随机梯度下降算法对本地模型参数进行更新,并通过加密协议对更新的梯度进行加密,以保障数据在传输过程中的安全性。为了进一步提升隐私保护的强度,该算法还集成了差分隐私技术,通过添加适量的随机噪声,有效防止了数据的敏感信息泄露。实验结果表明通过在MedMNIST2数据集上的验证,该算法在降低信息损失率方面表现出色,证明了其在大数据隐私保护方面的实际应用潜力和效果。 展开更多
关键词 大数据隐私 联邦学习 加密协议 差分隐私 模型参数更新
在线阅读 下载PDF
SPSSPRO在高职数学建模机器学习算法中的应用研究
17
作者 陶国飞 《数字通信世界》 2025年第10期86-88,共3页
随着大数据时代的到来,机器学习算法在数学建模中的应用日益广泛。高职数学建模教育作为培养学生数据分析与问题解决能力的重要环节,亟须引入高效的数据分析工具。本文旨在探讨SPSSPRO在高职数学建模机器学习算法中的应用,通过实际案例... 随着大数据时代的到来,机器学习算法在数学建模中的应用日益广泛。高职数学建模教育作为培养学生数据分析与问题解决能力的重要环节,亟须引入高效的数据分析工具。本文旨在探讨SPSSPRO在高职数学建模机器学习算法中的应用,通过实际案例展示其数据分析步骤与效果,突出SPSSPRO的易用性和价值。 展开更多
关键词 SPSSPRO 高职数学建模 机器学习算法 数据分析
在线阅读 下载PDF
机器学习算法用于水泥强度预测的研究进展 被引量:1
18
作者 李自强 崔素萍 +4 位作者 马忠诚 王亚丽 王晶 刘云 乔志杨 《材料导报》 北大核心 2025年第5期191-202,共12页
水泥的强度是衡量其性能的重要指标之一,传统的基于人工定时采样测定的方法准确性好但存在较大的滞后性,不能及时调控水泥生产过程。机器学习可通过不同算法对水泥等流程工业的原料及产品检测数据、微观结构图像、工艺运行参数等多维生... 水泥的强度是衡量其性能的重要指标之一,传统的基于人工定时采样测定的方法准确性好但存在较大的滞后性,不能及时调控水泥生产过程。机器学习可通过不同算法对水泥等流程工业的原料及产品检测数据、微观结构图像、工艺运行参数等多维生产数据进行有目标的关联分析,建立水泥强度预测模型,可以解决人工检测方法的滞后性问题。本文通过梳理常用算法的基本工作原理和优势,归纳基于机器学习的水泥强度预测模型,探讨其应用效果和发展方向,以期为水泥强度预测模型的进一步优化和在水泥工业中的应用提供参考。 展开更多
关键词 水泥强度 大数据分析 机器学习 预测模型
在线阅读 下载PDF
面向非独立同分布数据的迭代式联邦学习 被引量:1
19
作者 陈洪洋 李晓会 王天阳 《计算机工程与设计》 北大核心 2025年第4期1064-1071,共8页
针对现有的面向非独立同分布(non-IID)数据的联邦学习优化算法存在训练的模型缺失个性化、模型在测试集上精度较低的问题,提出一种迭代凝聚式簇估计联邦学习算法FL-ICE(iterative cluster estimation federated)。各个客户端联合训练单... 针对现有的面向非独立同分布(non-IID)数据的联邦学习优化算法存在训练的模型缺失个性化、模型在测试集上精度较低的问题,提出一种迭代凝聚式簇估计联邦学习算法FL-ICE(iterative cluster estimation federated)。各个客户端联合训练单个全局共享模型,迭代地依据客户端更新的相似度执行簇估计并通过梯度下降优化簇估计参数,对全局模型进行个性化处理。实验结果表明,该算法可以有效提升模型在测试集上的准确性,使得更大比例的客户端达到目标精度。 展开更多
关键词 联邦学习 分布式机器学习 个性化模型 迭代式训练 簇估计算法 非独立同分布数据 隐私保护
在线阅读 下载PDF
一种采用渐进学习模式的SBS-CLearning分类算法 被引量:3
20
作者 申彦 朱玉全 宋新平 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第6期696-703,共8页
针对Learn++. NSE算法中多个基分类器之间相互独立、未利用前阶段学习结果辅助后续阶段学习而准确率较低的问题,借鉴人类的学习过程,优化Learn++. NSE算法内部的学习机制,转变基分类器的独立学习为渐进学习,提出了一种采用渐进学习模式... 针对Learn++. NSE算法中多个基分类器之间相互独立、未利用前阶段学习结果辅助后续阶段学习而准确率较低的问题,借鉴人类的学习过程,优化Learn++. NSE算法内部的学习机制,转变基分类器的独立学习为渐进学习,提出了一种采用渐进学习模式的SBS-CLearning分类算法.分析了Learn++. NSE算法的不足.给出了SBS-CLearning算法的步骤,该算法在前阶段基分类器的基础之上先增量学习,再完成最终的加权集成.在测试数据集上对比分析了Learn++. NSE与SBSCLearning的分类准确率.试验结果表明:SBS-CLearning算法吸收了增量学习与集成学习的优势,相比Learn++. NSE提高了分类准确率.针对SEA人工数据集,SBS-CLearning,Learn++. NSE的平均分类准确率分别为0. 982,0. 976.针对旋转棋盘真实数据集,在Constant,Sinusoidal,Pulse环境下,SBS-CLearning的平均分类准确率分别为0. 624,0. 655,0. 662,而Learn++. NSE分别为0. 593,0. 633,0. 629. 展开更多
关键词 大数据挖掘 分类算法 集成学习 增量学习 概念漂移
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部