The combination of immunotherapy and chemotherapy is regarded as a promising approach for the treatment of certain types of cancer. However, the underlying mechanisms need to be fully investigated to guide the design ...The combination of immunotherapy and chemotherapy is regarded as a promising approach for the treatment of certain types of cancer. However, the underlying mechanisms need to be fully investigated to guide the design of more efficient protocols for cancer chemoimmunotherapy. It is well known that danger-associated molecular patterns (DAMPs) can activate immune cells, including dendritic cells (DCs), via Toll-like receptors (TLRs); however, the role of DAMPs released from chemical drug-treated tumor cells in the activation of the immune response needs to be further elucidated. Here, we found that colorectal cancer (CRC) cells treated with oxaliplatin (OXA) and/or 5-fluorouracil (5-Fu) released high levels of high-mobility group box 1 (HMGB1) and heat shock protein 70 (HSP70). After OXA/5-Fu therapy, the sera of CRC patients also exhibited increased levels of HMGB1 and HSP70, both of which are well-known DAMPs. The supernatants of dying CRC cells treated with OXA/5-Fu promoted mouse and human DC maturation, with upregulation of HLA-DR, CD80 and CD86 expression and enhancement of IL-lp, TNF-a, MIP-la, MIP-lp, RANTES and IP-IO production. Vaccines composed of DCs pulsed with the supernatants of chemically stressed CRC cells induced a more significant IFN-y-producing Thl response both in vitroand in vivo. However, the supernatants of chemically stressed CRC cells failed to induce phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating an essential role of TLR4 in DAMP-induced DC maturation and activation. Furthermore, pulsing with the supernatants of chemically stressed CRC cells did not efficiently induce an IFN-y-producing Thl response in TLR4-deficient DCs. Collectively, these results demonstrate that DAMPs released from chemically stressed cancer cells can activate DCs viaTLR4 and enhance the induction of an anti-tumor T-cell immune response, delineating a clinically relevant immuno-adjuvant pathway triggered by DAMPs.展开更多
The inflammatory bowel disease(IBD),including Crohn’s disease(CD)and ulcerative colitis,are chronic,relapsing immune mediated disorders of the gastrointestinal homeostasis and intestinal inflammation[1].Failure to re...The inflammatory bowel disease(IBD),including Crohn’s disease(CD)and ulcerative colitis,are chronic,relapsing immune mediated disorders of the gastrointestinal homeostasis and intestinal inflammation[1].Failure to resolve mucosal inflammation and maintain gut barrier are notable shared clinical challenges in IBD,in particular when they activate immune cells within the gut lamia propria.Clinical trials and animal model studies aiming towards DAMPs have demonstrated that they can be effective therapeutic targets in mucosal inflammation of IBD.展开更多
The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and e...The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.展开更多
With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided b...With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided by synchronous generators.To address this critical issue,Virtual Synchronous Generator(VSG)technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators.To enhance the operational efficiency of virtual synchronous generators(VSGs),this study employs smallsignal modeling analysis,root locus methods,and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency stability and power output during transient processes.Based on these analyses,an adaptive control strategy is proposed:increasing the virtual inertia when the rotor angular velocity undergoes rapid changes,while strengthening the damping coefficient when the speed deviation exceeds a certain threshold to suppress angular velocity oscillations.To validate the effectiveness of the proposed method,a grid-connected VSG simulation platform was developed inMATLAB/Simulink.Comparative simulations demonstrate that the proposed adaptive control strategy outperforms conventional VSGmethods by significantly reducing grid frequency deviations and shortening active power response time during active power command changes and load disturbances.This approach enhances microgrid stability and dynamic performance,confirming its viability for renewable-dominant power systems.Future work should focus on experimental validation and real-world parameter optimization,while further exploring the strategy’s effectiveness in improvingVSG low-voltage ride-through(LVRT)capability and power-sharing applications in multi-parallel configurations.展开更多
In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitud...In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.展开更多
7075 aluminum alloy is often used as an important load-bearing structure in aircraft industry due to its superior mechanical properties.During the process of deep hole boring,the boring bar is prone to vibrate because...7075 aluminum alloy is often used as an important load-bearing structure in aircraft industry due to its superior mechanical properties.During the process of deep hole boring,the boring bar is prone to vibrate because of its limited machining space,bad environment and large elongation induced low stiffness.To reduce vibration and improve machined surface quality,a particle damping boring bar,filled with particles in its inside damping block,is designed based on the theory of vibration control.The theoretical damping coefficient is determined,then the boring bar structure is designed and trial-manufactured.Experimental studies through impact testing show that cemented carbide particles with a diameter of 5 mm and a filling rate of 70% achieve a damping ratio of 19.386%,providing excellent vibration reduction capabilities,which may reduce the possibility of boring vibration.Then,experiments are setup to investigate its vibration reduction performance during deep hole boring of 7075 aluminum alloy.To observe more obviously,severe working conditions are adopted and carried out to acquire the time domain vibration signal of the head of the boring bar and the surface morphologies and roughness values of the workpieces.By comparing different experimental results,it is found that the designed boring bar could reduce the maximum vibration amplitude by up to 81.01% and the surface roughness value by up to 47.09% compared with the ordinary boring bar in two sets of experiments,proving that the designed boring bar can effectively reduce vibration.This study can offer certain valuable insights for the machining of this material.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
OBJECTIVE:To evaluate the 10-year therapeutic efficacy of Traditional Chinese Medicine(TCM)using the Strengthening Spleen and Draining Dampness therapy in the management of idiopathic membranous nephropathy(IMN).METHO...OBJECTIVE:To evaluate the 10-year therapeutic efficacy of Traditional Chinese Medicine(TCM)using the Strengthening Spleen and Draining Dampness therapy in the management of idiopathic membranous nephropathy(IMN).METHODS:A single-center,retrospective analysis was conducted on patients diagnosed with IMN who met predefined inclusion and exclusion criteria.Data were collected from the Department of Nephrology at Longhua Hospital,affiliated with Shanghai University of Traditional Chinese Medicine,between January 2007 and December 2011.Clinical parameters including 24-h urinary protein,serum albumin,serum creatinine,and estimated glomerular filtration rate(e GFR,EPI)were assessed at baseline and at 1,3,5,and 10 years of follow-up.The efficacy of the Strengthening Spleen and Draining Dampness therapy was analyzed using repeated measures analysis of variance(ANOVA).Kaplan-Meier survival curves and multivariate proportional hazards model(Cox regression models)were employed to identify factors associated with treatment outcomes.RESULTS:A total of 265 patients were included,with a median follow-up duration of 96 months(36,122).TCM treatment significantly reduced 24-h urinary protein levels(P<0.001),and increased serum albumin levels(P<0.001),while serum creatinine remained stable(P=0.187).Remission rates at 1,3,5,and 10 years were 52.81%,69.71%,68.39%,and 72.36%,respectively,and the rates of avoiding composite outcome events at the same intervals were 98.27%,94.29%,94.19%,and 93.50%.In the subgroup receiving TCM only,remission rates were 56.67%,84.44%,76.32%,and 82.86%.For patients treated initially with Western Medicine followed by TCM,the rates were 52.83%,65.85%,67.47%and 67.75%.In the cohort of patients who received TCM as their first-line therapy,remission rates were 49.23%,62.50%,61.76%,and 69.23%.Multivariate Cox regression analysis revealed that the duration of TCM treatment[hazard ratio(HR)=0.826,95%confidence interval(CI)(0.779,0.876),P<0.001],presence of hypertension[HR=1.912,95%CI(1.181,3.094),P=0.008],baseline serum albumin level[HR=0.930,95%CI(0.894,0.969),P<0.001],and the rate of serum albumin increase within the first year of treatment[HR=0.930,95%CI(0.909,0.957),P<0.001]were significantly associated with clinical outcomes.CONCLUSION:The Strengthening Spleen and Draining Dampness therapy demonstrated robust short-and longterm efficacy in treating IMN,with high rates of remission and renal survival over 10 years.Key factors influencing clinical remission included the duration of TCM treatment,baseline serum albumin levels,the presence of hypertension,and the rate of increase in serum albumin within the first year.These findings suggest that this TCM approach provides a viable long-term treatment option for IMN.展开更多
This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration re...This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration reduction characteristics are proposed to facilitate the design of the AESDFD.To achieve this,the nonlinear friction force is initially represented as equivalent stiffness and damping coefficients,based on the ball-plate friction model.Second,three evaluation parameters—optimal slipping displacement,loss factor,and controllability—are proposed to reveal the vibration reduction characteristics of the AESDFD,alongside determining the optimal normal force.Subsequently,the finite element method,in conjunction with the ball-plate friction model,is introduced to formulate the governing equation of a low-pressure rotor system equipped with AESDFDs.The steady-state responses of the AESDFDs-rotor system are solved using the harmonic balance method combined with an efficient iteration method.Finally,the solutions are validated on the AESDFDs-rotor system both numerically and experimentally.The results indicate that controllability effectively assesses the vibration reduction performance of the AESDFD and is relatively insensitive to variations in low normal force.Away from the critical speed,the AESDFD suppresses vibration by altering the resonance position of the rotor system through its stiffness coefficient.Near the critical speed,vibration reduction is achieved primarily through energy dissipation by the damping coefficient.If the loss factor is less than one,the stiffness coefficient can diminish the vibration reduction effect of the damping coefficient.Notably,the optimal normal force of the AESDFD achieves optimal vibration reduction effect.This study reveals that changes in rotor system unbalance do not affect the vibration reduction characteristics of the AESDFD,with the same upper limit to the vibration reduction effect of the AESDFD.展开更多
OBJECTIVE:To reach consensus on the diagnostic criteria of syndrome of dampness obstruction in idiopathic membranous nephropathy(IMN)patients by literature research and expert investigation(interviews and a Delphi met...OBJECTIVE:To reach consensus on the diagnostic criteria of syndrome of dampness obstruction in idiopathic membranous nephropathy(IMN)patients by literature research and expert investigation(interviews and a Delphi method).METHODS:Our study was consistent with T/CACM 1336-2020.We searched the monographs and references published in the past 40 years(1983-2022),and established the diagnostic criteria pool of waterdampness syndrome and dampness-turbidity syndrome in Traditional Chinese Medicine(TCM)based on literature by using frequency statistics and correlation analysis.Expert investigation(interview method and two rounds of Delphi method)was used to form the diagnostic criteria of water-dampness syndrome and dampnessturbidity syndrome of idiopathic membranous nephropathy.Clinical diagnostic test research was carried out,and compared with“Diagnostic Criteria for dampness syndrome”(T/CACM 1454-2023)to evaluate the authenticity,reliability and clinical application value of the standard.RESULTS:A total of 122 relevant guides,standards,monographs and documents were included through searching books and Chinese databases.Four experts were interviewed and two rounds of delphi method(75 experts nationwide)were carried out.The experts'opinions are relatively concentrated and the differences are small.Based on the weight of each index,the diagnostic criteria indexes of water-dampness syndrome and dampness-turbidity syndrome were selected.After discussion by the core group members,the diagnostic model of"necessary symptoms and optional symptoms"was established,and the final diagnostic criteria of waterdampness syndrome and dampness-turbidity syndrome were established.One hundred and ninety-one inpatients and outpatients of Guangdong Provincial Hospital of Chinese Medicine from January 2021 to February 2023 were included in Diagnostic test study.There was no statistical difference in gender,age and course of disease(P>0.05).The sensitivity and specificity of the trial standard were 90.34%and 73.33%respectively,while the sensitivity and specificity of T/CACM 1454-2023 were 99.43%and 6.67%,respectively.CONCLUSIONS:The consensus-based diagnostic criteria for IMN can be widely incorporated in TCM.A further clinical study will be conducted to analyze the diagnosis value and cut-off score of our IMN criteria.展开更多
This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered ...This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.展开更多
OBJECTIVE:To examine the T helper 17(Th17)/regulatory T(Treg)immune balance in passive Heymann nephritis(PHN)rats with dampness syndrome(DS).METHODS:Rats were divided into four groups:normal control(NC),PHN model,PHN+...OBJECTIVE:To examine the T helper 17(Th17)/regulatory T(Treg)immune balance in passive Heymann nephritis(PHN)rats with dampness syndrome(DS).METHODS:Rats were divided into four groups:normal control(NC),PHN model,PHN+DS model,and DS model.The DS model was created by administering lard,a 60%cold sucrose solution,and Chinese Baijiu viagavage.In contrast,PHN was induced in male Sprague-Dawley rats by injecting anti-Fx1A serum into the tail vein.The general condition of the rats was assessed,while the levels of urine protein,albumin,and serum creatinine were measured using commercially available kits.Pathological renal damage was evaluated using hematoxylin and eosin,periodic acid-schiff,and periodic acid-silver methenamine staining,while podocyte damage was assessed through immunohistochemistry.The proportions of Th17 cells and Treg cells in peripheral blood mononuclear cells were quantified by flow cytometry.Plasma cytokine levels of interleukin 17,transforming growth factor-β1,and interleukin 6 were determined by enzyme-linked immunosorbent assay.RESULTS:This study demonstrated a significant increase in proteinuria and total cholesterol levels in PHN rats with DS,along with more severe histopathological kidney damage.DS exacerbated podocyte damage in PHN rats.Additionally,the number of Treg cells was significantly reduced,while the ratio of Th17/Treg cells was significantly elevated in PHN rats with DS.CONCLUSION:In conclusion,the findings of our study indicate that the presence of DS exacerbates renal injury in PHN,a rat model used to simulate experimental membranous nephropathy.This observation may be closely linked to the exacerbation of the Th17/Treg imbalance and podocyte injury in PHN rats induced by DS.展开更多
Modular floating structures(MFS)offer a sustainable pathway towards the expansion of coastal cities in adaptation tofilooding and sea level rise driven by climate change.It is therefore necessary to develop analytical...Modular floating structures(MFS)offer a sustainable pathway towards the expansion of coastal cities in adaptation tofilooding and sea level rise driven by climate change.It is therefore necessary to develop analytical methods easily accessible to architects or structural engineers for the rapid prototyping of MFS designs.This work develops novel closed‑form expressions describing the rigid body dynamics of symmetrically loaded rectangular pontoons across all six degrees of freedom(DOF)excited by surface waves approaching from any arbitrary direction.The derivations were based on Airy wave theory assuming frequency‑independent added mass and damping.When benchmarked against numerical solutions from ANSYS/AQWA for two MFS prototypes,the analytical approach proved capable of predicting the response amplitude operators(RAO)across all DOFs,wave directions,and structural confiigurations.However,while the response of mass‑dominated DOFs(surge,sway,and yaw)were well captured,the damping ratio for stiffness‑dominated DOFs(heave,roll,and pitch)must be judiciously selected to yield accurate RAO results.A parametric investigation further elucidated the contribution of structural geometry and wave directionality on the critical accelerations experienced by an idealizedfiloating structure founded upon a square pontoon under realistic sea states.It was discovered that the largest accelerations were triggered by waves approaching orthogonally to the pontoon.Ultimately,this work facilitates a more streamlined approach for the dynamic analysis of compliantfiloating bodies to supplement detailed modeling efforts via numerical methods.展开更多
文摘The combination of immunotherapy and chemotherapy is regarded as a promising approach for the treatment of certain types of cancer. However, the underlying mechanisms need to be fully investigated to guide the design of more efficient protocols for cancer chemoimmunotherapy. It is well known that danger-associated molecular patterns (DAMPs) can activate immune cells, including dendritic cells (DCs), via Toll-like receptors (TLRs); however, the role of DAMPs released from chemical drug-treated tumor cells in the activation of the immune response needs to be further elucidated. Here, we found that colorectal cancer (CRC) cells treated with oxaliplatin (OXA) and/or 5-fluorouracil (5-Fu) released high levels of high-mobility group box 1 (HMGB1) and heat shock protein 70 (HSP70). After OXA/5-Fu therapy, the sera of CRC patients also exhibited increased levels of HMGB1 and HSP70, both of which are well-known DAMPs. The supernatants of dying CRC cells treated with OXA/5-Fu promoted mouse and human DC maturation, with upregulation of HLA-DR, CD80 and CD86 expression and enhancement of IL-lp, TNF-a, MIP-la, MIP-lp, RANTES and IP-IO production. Vaccines composed of DCs pulsed with the supernatants of chemically stressed CRC cells induced a more significant IFN-y-producing Thl response both in vitroand in vivo. However, the supernatants of chemically stressed CRC cells failed to induce phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating an essential role of TLR4 in DAMP-induced DC maturation and activation. Furthermore, pulsing with the supernatants of chemically stressed CRC cells did not efficiently induce an IFN-y-producing Thl response in TLR4-deficient DCs. Collectively, these results demonstrate that DAMPs released from chemically stressed cancer cells can activate DCs viaTLR4 and enhance the induction of an anti-tumor T-cell immune response, delineating a clinically relevant immuno-adjuvant pathway triggered by DAMPs.
基金supported by the National Natural Science Foundation of China(81571881,81772052,and 81801971)Medical Research Program of Jiangsu Commission of Health(H2018058)+1 种基金Key Project of Science Foundation of the 12th Five-Year Plan(BNJ13J002)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_0052)
文摘The inflammatory bowel disease(IBD),including Crohn’s disease(CD)and ulcerative colitis,are chronic,relapsing immune mediated disorders of the gastrointestinal homeostasis and intestinal inflammation[1].Failure to resolve mucosal inflammation and maintain gut barrier are notable shared clinical challenges in IBD,in particular when they activate immune cells within the gut lamia propria.Clinical trials and animal model studies aiming towards DAMPs have demonstrated that they can be effective therapeutic targets in mucosal inflammation of IBD.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11961059,1210502)the University Innovation Project of Gansu Province(Grant No.2023B-062)the Gansu Province Basic Research Innovation Group Project(Grant No.23JRRA684).
文摘The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.
基金financially supported by the Talent Initiation Fund of Wuxi University(550220008).
文摘With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided by synchronous generators.To address this critical issue,Virtual Synchronous Generator(VSG)technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators.To enhance the operational efficiency of virtual synchronous generators(VSGs),this study employs smallsignal modeling analysis,root locus methods,and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency stability and power output during transient processes.Based on these analyses,an adaptive control strategy is proposed:increasing the virtual inertia when the rotor angular velocity undergoes rapid changes,while strengthening the damping coefficient when the speed deviation exceeds a certain threshold to suppress angular velocity oscillations.To validate the effectiveness of the proposed method,a grid-connected VSG simulation platform was developed inMATLAB/Simulink.Comparative simulations demonstrate that the proposed adaptive control strategy outperforms conventional VSGmethods by significantly reducing grid frequency deviations and shortening active power response time during active power command changes and load disturbances.This approach enhances microgrid stability and dynamic performance,confirming its viability for renewable-dominant power systems.Future work should focus on experimental validation and real-world parameter optimization,while further exploring the strategy’s effectiveness in improvingVSG low-voltage ride-through(LVRT)capability and power-sharing applications in multi-parallel configurations.
基金supported by the National Key Research and Development Program of China(No.2022YFA1603401)National Natural Science Foundation of China(Nos.12035010 and 12342501)+1 种基金Beijing Outstanding Young Scientist Program(No.JWZQ20240101006)the Tsinghua University Dushi Program.
文摘In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.
基金supported by the Scientific Research Program of Tianjin Education Committee(No.2022ZD030)。
文摘7075 aluminum alloy is often used as an important load-bearing structure in aircraft industry due to its superior mechanical properties.During the process of deep hole boring,the boring bar is prone to vibrate because of its limited machining space,bad environment and large elongation induced low stiffness.To reduce vibration and improve machined surface quality,a particle damping boring bar,filled with particles in its inside damping block,is designed based on the theory of vibration control.The theoretical damping coefficient is determined,then the boring bar structure is designed and trial-manufactured.Experimental studies through impact testing show that cemented carbide particles with a diameter of 5 mm and a filling rate of 70% achieve a damping ratio of 19.386%,providing excellent vibration reduction capabilities,which may reduce the possibility of boring vibration.Then,experiments are setup to investigate its vibration reduction performance during deep hole boring of 7075 aluminum alloy.To observe more obviously,severe working conditions are adopted and carried out to acquire the time domain vibration signal of the head of the boring bar and the surface morphologies and roughness values of the workpieces.By comparing different experimental results,it is found that the designed boring bar could reduce the maximum vibration amplitude by up to 81.01% and the surface roughness value by up to 47.09% compared with the ordinary boring bar in two sets of experiments,proving that the designed boring bar can effectively reduce vibration.This study can offer certain valuable insights for the machining of this material.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金Supported by the National Key Research and Development Project,Clinical Study on the Treatment of Refractory Membranous Nephropathy with the Treatment of Strengthening Spleen and Draining Dampness in Method using Single Group Target Value Method(No.2019YFC1709403)Systematic Study on the Diagnosis and Treatment Rules of Membranous Nephropathy in Traditional Chinese Medicine(No.2023YFC35033501,No.2023YFC35033503)。
文摘OBJECTIVE:To evaluate the 10-year therapeutic efficacy of Traditional Chinese Medicine(TCM)using the Strengthening Spleen and Draining Dampness therapy in the management of idiopathic membranous nephropathy(IMN).METHODS:A single-center,retrospective analysis was conducted on patients diagnosed with IMN who met predefined inclusion and exclusion criteria.Data were collected from the Department of Nephrology at Longhua Hospital,affiliated with Shanghai University of Traditional Chinese Medicine,between January 2007 and December 2011.Clinical parameters including 24-h urinary protein,serum albumin,serum creatinine,and estimated glomerular filtration rate(e GFR,EPI)were assessed at baseline and at 1,3,5,and 10 years of follow-up.The efficacy of the Strengthening Spleen and Draining Dampness therapy was analyzed using repeated measures analysis of variance(ANOVA).Kaplan-Meier survival curves and multivariate proportional hazards model(Cox regression models)were employed to identify factors associated with treatment outcomes.RESULTS:A total of 265 patients were included,with a median follow-up duration of 96 months(36,122).TCM treatment significantly reduced 24-h urinary protein levels(P<0.001),and increased serum albumin levels(P<0.001),while serum creatinine remained stable(P=0.187).Remission rates at 1,3,5,and 10 years were 52.81%,69.71%,68.39%,and 72.36%,respectively,and the rates of avoiding composite outcome events at the same intervals were 98.27%,94.29%,94.19%,and 93.50%.In the subgroup receiving TCM only,remission rates were 56.67%,84.44%,76.32%,and 82.86%.For patients treated initially with Western Medicine followed by TCM,the rates were 52.83%,65.85%,67.47%and 67.75%.In the cohort of patients who received TCM as their first-line therapy,remission rates were 49.23%,62.50%,61.76%,and 69.23%.Multivariate Cox regression analysis revealed that the duration of TCM treatment[hazard ratio(HR)=0.826,95%confidence interval(CI)(0.779,0.876),P<0.001],presence of hypertension[HR=1.912,95%CI(1.181,3.094),P=0.008],baseline serum albumin level[HR=0.930,95%CI(0.894,0.969),P<0.001],and the rate of serum albumin increase within the first year of treatment[HR=0.930,95%CI(0.909,0.957),P<0.001]were significantly associated with clinical outcomes.CONCLUSION:The Strengthening Spleen and Draining Dampness therapy demonstrated robust short-and longterm efficacy in treating IMN,with high rates of remission and renal survival over 10 years.Key factors influencing clinical remission included the duration of TCM treatment,baseline serum albumin levels,the presence of hypertension,and the rate of increase in serum albumin within the first year.These findings suggest that this TCM approach provides a viable long-term treatment option for IMN.
基金supported by the National Science and Technology Major Project,China,the China Scholarship Council(No.202306290109)National Natural Science Foundation of China(Nos.52472456 and 52361165620)。
文摘This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration reduction characteristics are proposed to facilitate the design of the AESDFD.To achieve this,the nonlinear friction force is initially represented as equivalent stiffness and damping coefficients,based on the ball-plate friction model.Second,three evaluation parameters—optimal slipping displacement,loss factor,and controllability—are proposed to reveal the vibration reduction characteristics of the AESDFD,alongside determining the optimal normal force.Subsequently,the finite element method,in conjunction with the ball-plate friction model,is introduced to formulate the governing equation of a low-pressure rotor system equipped with AESDFDs.The steady-state responses of the AESDFDs-rotor system are solved using the harmonic balance method combined with an efficient iteration method.Finally,the solutions are validated on the AESDFDs-rotor system both numerically and experimentally.The results indicate that controllability effectively assesses the vibration reduction performance of the AESDFD and is relatively insensitive to variations in low normal force.Away from the critical speed,the AESDFD suppresses vibration by altering the resonance position of the rotor system through its stiffness coefficient.Near the critical speed,vibration reduction is achieved primarily through energy dissipation by the damping coefficient.If the loss factor is less than one,the stiffness coefficient can diminish the vibration reduction effect of the damping coefficient.Notably,the optimal normal force of the AESDFD achieves optimal vibration reduction effect.This study reveals that changes in rotor system unbalance do not affect the vibration reduction characteristics of the AESDFD,with the same upper limit to the vibration reduction effect of the AESDFD.
基金the Special Project of State Key Laboratory of Dampness Syndrome of Chinese Medicine:Study on Criteria for Diagnosis of Dampness Syndrome of Idiopathic Membranous Nephropathy,Cohort Study on Pathogenesis and Material Basis of Dampness Syndrome of Idiopathic Membranous Nephropathy,Randomized Controlled Clinical Study of Sanqi Qushi Granule in Treatment of Membranous Nephropathy(No.SZ2021ZZ02,SZ2021ZZ09 and SZ2021ZZ36)the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund:Guangdong-Hong Kong-Macao Joint Lab(No.2020B1212030006)+2 种基金the Natural Science Foundation of Guangdong Province:Study on the Mechanism of Sanqi Qushi Prescription Delaying Podocellular Senescence in Membranous Nephropathy based on Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase-Stimulator of Interferon Genes-Nuclear Factor Kappa-B Signaling Pathway(No.2022A1515011628)the Guangzhou Science and Technology Plan Project:to Explore the Mechanism of Treating Membranous Nephropathy from the Perspective of Regulating Amino Acid Metabolism Disorder(No.2023A03J0746)Special Funding for Scientific and Technological Research on Traditional Chinese Medicine,Guangdong Provincial Hospital of Chinese Medicine:a Multimodular Machine Learning Prediction Model based on Pathological Image-transcriptomics and Traditional Chinese Medicine Syndromes was Used to Investigate the Prognostic Correlation of Long non-coding RNA Molecules in Nephropathy and the Intervention Mechanism of Sanqi Qushi Formula,to Investigate the Pathogenesis and Microbiological Mechanism of Dampness Syndrome of Membranous Nephropathy based on the Microecological Changes of Tongue Coating(No.YN2023MB02,YN2023MB10)。
文摘OBJECTIVE:To reach consensus on the diagnostic criteria of syndrome of dampness obstruction in idiopathic membranous nephropathy(IMN)patients by literature research and expert investigation(interviews and a Delphi method).METHODS:Our study was consistent with T/CACM 1336-2020.We searched the monographs and references published in the past 40 years(1983-2022),and established the diagnostic criteria pool of waterdampness syndrome and dampness-turbidity syndrome in Traditional Chinese Medicine(TCM)based on literature by using frequency statistics and correlation analysis.Expert investigation(interview method and two rounds of Delphi method)was used to form the diagnostic criteria of water-dampness syndrome and dampnessturbidity syndrome of idiopathic membranous nephropathy.Clinical diagnostic test research was carried out,and compared with“Diagnostic Criteria for dampness syndrome”(T/CACM 1454-2023)to evaluate the authenticity,reliability and clinical application value of the standard.RESULTS:A total of 122 relevant guides,standards,monographs and documents were included through searching books and Chinese databases.Four experts were interviewed and two rounds of delphi method(75 experts nationwide)were carried out.The experts'opinions are relatively concentrated and the differences are small.Based on the weight of each index,the diagnostic criteria indexes of water-dampness syndrome and dampness-turbidity syndrome were selected.After discussion by the core group members,the diagnostic model of"necessary symptoms and optional symptoms"was established,and the final diagnostic criteria of waterdampness syndrome and dampness-turbidity syndrome were established.One hundred and ninety-one inpatients and outpatients of Guangdong Provincial Hospital of Chinese Medicine from January 2021 to February 2023 were included in Diagnostic test study.There was no statistical difference in gender,age and course of disease(P>0.05).The sensitivity and specificity of the trial standard were 90.34%and 73.33%respectively,while the sensitivity and specificity of T/CACM 1454-2023 were 99.43%and 6.67%,respectively.CONCLUSIONS:The consensus-based diagnostic criteria for IMN can be widely incorporated in TCM.A further clinical study will be conducted to analyze the diagnosis value and cut-off score of our IMN criteria.
基金the postdoctoral research grant received from the University of Glasgow for the partial financial support for this research work。
文摘This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.
基金Supported by the Special Project of State Key Laboratory of Dampness Syndrome of Chinese Medicine: a Randomized Controlled Clinical Study of Sanqi Qushi Granules in the Treatment of Membranous Nephropathy (No. SZ2021ZZ36)a Cohort Study on the Pathogenesis and Evolution of Dampness Syndrome in Idiopathic Membranous Nephropathy and Its Material Basis (No. SZ2021ZZ09)+8 种基金the National Natural Science Foundation of China: Research on the Role of Damp Nephropathy based on the Metabolic Disorders-T helper 17/Regulatory T Imbalance Evil in the Progression of Membranous (No. 81974565)the Guangzhou Science and Technology Plan Project: Exploring the Mechanism of Treating Membranous Nephropathy based on Dampness from the Perspective of Regulating Amino Acid Metabolism Disorders (No. 2023A03J0746)Multi-omics Study to Explore the Material Basis of Dampness Syndrome in Membranous Nephropathy and the Intervention Mechanism of Sanqi Qushi Decoction (No. 2024A03J0117)a Multimodal Machine Learning Prediction Model based on Pathological Images, Transcriptomics and Traditional Chinese Medicine Syndromes to Explore the Prognosis-related lncRNA Molecules of Membranous Nephropathy and the Intervention Mechanism of Sanqi Qushi Decoction (No. 2025A03J4062)Research Project of Guangdong Provincial Hospital of Traditional Chinese Medicine: Construction of a Risk Management Prediction Model for Membranous Nephropathy Based on Artificial Intelligence Technology (No. YN2023HL03)Study on the Pathogenesis Evolution and Microbiological Mechanism of Membranous Nephropathy with Dampness Syndrome Based on the Changes of Tongue Coating Microecology (No. YN2023MB10)Post-doctoral Research Project of Guangdong Provincial Hospital of Chinese Medicine:Study on the Mechanism of Yinyang Shengmai Method in Regulating Myocardial Infarction in Diabetic Rats based on Ang/Vascular Endothelial Growth Factor-Mediated Angiogenesis (No. 10814)Funding Project of Guangdong Provincial Administration of Traditional Chinese Medicine:Study on the Mechanism of"Dampness Stagnation in Blood Collaterals"inducing Vascular Aging Based on Oxidative Stress-inflammation Crosstalk and Intervention of Traditional Chinese Medicine (No. 20233021)China Postdoctoral Science Foundation Funded Project:Study on the Mechanism of Shenmai Injection in Promoting Angiogenesis after Myocardial Infarction in Rats with Qi and Yin Deficiency Type Diabetic Nephropathy (No. 2023M730810)
文摘OBJECTIVE:To examine the T helper 17(Th17)/regulatory T(Treg)immune balance in passive Heymann nephritis(PHN)rats with dampness syndrome(DS).METHODS:Rats were divided into four groups:normal control(NC),PHN model,PHN+DS model,and DS model.The DS model was created by administering lard,a 60%cold sucrose solution,and Chinese Baijiu viagavage.In contrast,PHN was induced in male Sprague-Dawley rats by injecting anti-Fx1A serum into the tail vein.The general condition of the rats was assessed,while the levels of urine protein,albumin,and serum creatinine were measured using commercially available kits.Pathological renal damage was evaluated using hematoxylin and eosin,periodic acid-schiff,and periodic acid-silver methenamine staining,while podocyte damage was assessed through immunohistochemistry.The proportions of Th17 cells and Treg cells in peripheral blood mononuclear cells were quantified by flow cytometry.Plasma cytokine levels of interleukin 17,transforming growth factor-β1,and interleukin 6 were determined by enzyme-linked immunosorbent assay.RESULTS:This study demonstrated a significant increase in proteinuria and total cholesterol levels in PHN rats with DS,along with more severe histopathological kidney damage.DS exacerbated podocyte damage in PHN rats.Additionally,the number of Treg cells was significantly reduced,while the ratio of Th17/Treg cells was significantly elevated in PHN rats with DS.CONCLUSION:In conclusion,the findings of our study indicate that the presence of DS exacerbates renal injury in PHN,a rat model used to simulate experimental membranous nephropathy.This observation may be closely linked to the exacerbation of the Th17/Treg imbalance and podocyte injury in PHN rats induced by DS.
文摘Modular floating structures(MFS)offer a sustainable pathway towards the expansion of coastal cities in adaptation tofilooding and sea level rise driven by climate change.It is therefore necessary to develop analytical methods easily accessible to architects or structural engineers for the rapid prototyping of MFS designs.This work develops novel closed‑form expressions describing the rigid body dynamics of symmetrically loaded rectangular pontoons across all six degrees of freedom(DOF)excited by surface waves approaching from any arbitrary direction.The derivations were based on Airy wave theory assuming frequency‑independent added mass and damping.When benchmarked against numerical solutions from ANSYS/AQWA for two MFS prototypes,the analytical approach proved capable of predicting the response amplitude operators(RAO)across all DOFs,wave directions,and structural confiigurations.However,while the response of mass‑dominated DOFs(surge,sway,and yaw)were well captured,the damping ratio for stiffness‑dominated DOFs(heave,roll,and pitch)must be judiciously selected to yield accurate RAO results.A parametric investigation further elucidated the contribution of structural geometry and wave directionality on the critical accelerations experienced by an idealizedfiloating structure founded upon a square pontoon under realistic sea states.It was discovered that the largest accelerations were triggered by waves approaching orthogonally to the pontoon.Ultimately,this work facilitates a more streamlined approach for the dynamic analysis of compliantfiloating bodies to supplement detailed modeling efforts via numerical methods.