This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration re...This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration reduction characteristics are proposed to facilitate the design of the AESDFD.To achieve this,the nonlinear friction force is initially represented as equivalent stiffness and damping coefficients,based on the ball-plate friction model.Second,three evaluation parameters—optimal slipping displacement,loss factor,and controllability—are proposed to reveal the vibration reduction characteristics of the AESDFD,alongside determining the optimal normal force.Subsequently,the finite element method,in conjunction with the ball-plate friction model,is introduced to formulate the governing equation of a low-pressure rotor system equipped with AESDFDs.The steady-state responses of the AESDFDs-rotor system are solved using the harmonic balance method combined with an efficient iteration method.Finally,the solutions are validated on the AESDFDs-rotor system both numerically and experimentally.The results indicate that controllability effectively assesses the vibration reduction performance of the AESDFD and is relatively insensitive to variations in low normal force.Away from the critical speed,the AESDFD suppresses vibration by altering the resonance position of the rotor system through its stiffness coefficient.Near the critical speed,vibration reduction is achieved primarily through energy dissipation by the damping coefficient.If the loss factor is less than one,the stiffness coefficient can diminish the vibration reduction effect of the damping coefficient.Notably,the optimal normal force of the AESDFD achieves optimal vibration reduction effect.This study reveals that changes in rotor system unbalance do not affect the vibration reduction characteristics of the AESDFD,with the same upper limit to the vibration reduction effect of the AESDFD.展开更多
We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argum...We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argument by contradiction with the test function techniques,we prove that not only any non-trivial solution blows up in finite time under 0<α<1,N≥1 and p>1,but also any non-trivial solution blows up in finite time underα=0,2≤N≤4 and p being the Strauss exponent.展开更多
The DArk Matter Particle Explorer(DAMPE)is a space high-energy particle andγ-ray detector whose major scientific goals are the indirect detection of dark matter particles,the origin of cosmic rays and highenergyγ-ra...The DArk Matter Particle Explorer(DAMPE)is a space high-energy particle andγ-ray detector whose major scientific goals are the indirect detection of dark matter particles,the origin of cosmic rays and highenergyγ-ray astronomy.Since its successful launch in December 2015,the DAMPE has been operated smoothly in orbit for more than 8 years.The direct measurements of the boron-to-carbon and boron-to-oxygen flux ratios,and the proton+Helium spectrum up to 316 TeV have been obtained,revealing new spectral features with very high significances.The search results ofγ-ray spectral line and fractionally charged particles indicate a good potential of DAMPE for indirect dark matter detection and new physical discovery in space.The DAMPE measurements are expected to significantly advance our understanding of the fundamental problems in astroparticle physics.展开更多
This paper is devoted to the Cauchy problem for the generalized damped Boussinesq equation with a nonlinear source term in the natural energy space.With the help of linear time-space estimates,we establish the local e...This paper is devoted to the Cauchy problem for the generalized damped Boussinesq equation with a nonlinear source term in the natural energy space.With the help of linear time-space estimates,we establish the local existence and uniqueness of solutions by means of the contraction mapping principle.The global existence and blow-up of the solutions at both subcritical and critical initial energy levels are obtained.Moreover,we construct the sufficient conditions of finite time blow-up of the solutions with arbitrary positive initial energy.展开更多
This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of...This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations.展开更多
In this paper, we consider a class of damped vibration systems with super-quadratic potential. We obtain at least two nonzero periodic solutions through the minimization method and Morse theory. Moreover, if the poten...In this paper, we consider a class of damped vibration systems with super-quadratic potential. We obtain at least two nonzero periodic solutions through the minimization method and Morse theory. Moreover, if the potential is even with respect to the spatial variables, by applying a minimax type theorem, we can obtain a stronger multiplicity result with the number of solutions linked to the Morse index at zero.展开更多
To predict the maximum earthquake response of an SDOF structure with a Maxwell fluid damper or supplemental brace-viscous damper system using the seismic design response spectrum technique,a new approach is presented ...To predict the maximum earthquake response of an SDOF structure with a Maxwell fluid damper or supplemental brace-viscous damper system using the seismic design response spectrum technique,a new approach is presented to determine the first-and second-order equivalent viscous damping and stiffness,the peak responses,and the damper force of the above structure.Based on the fact that the dynamic characteristics of a general linear viscoelastically damped structure are fully determined by its free vibration properties and the relaxation time constants of a Maxwell fluid damper and supplemental brace-viscous damper system in engineering practice are all small,the method of improved multiple time scales and the equivalent criterion in which all free vibration properties are the same are used to obtain the first-and second-order equivalent viscous damping and stiffness of the above structure in closed form.The accuracy of the proposed method is higher and significantly better than that of the modal strain energy method.Furthermore,in the parametric range of the requirements of the Chinese "Code for Seismic Design of Buildings",the error of the proposed second-order equivalent system for the abovementioned engineering structure is not more than 0.5%.展开更多
(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression...(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.展开更多
The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs...The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.展开更多
This paper gives a dynamic decoupling approach for the analysis of large scale non-classically damped system, in which the complex variable computations were completely avoided not only in solving for the eigenvalue p...This paper gives a dynamic decoupling approach for the analysis of large scale non-classically damped system, in which the complex variable computations were completely avoided not only in solving for the eigenvalue problem but also in the calculation of the dynamic response. The analytical approaches for undamped gyroscopic system, non-classically damped system, including the damped gyroscopic system were unified. Very interesting and useful theoretical results, practical algorithms were obtained which are applicable to both non-defective and defective systems.展开更多
The purpose is to design the control method for a single-degree-of-freedom(SDOF)exponentially damped oscillator.Based on the Lyapunov stability theory,sliding mode control and adaptive sliding mode control have been p...The purpose is to design the control method for a single-degree-of-freedom(SDOF)exponentially damped oscillator.Based on the Lyapunov stability theory,sliding mode control and adaptive sliding mode control have been proposed.Sliding control laws and adaptive sliding laws are designed for exponentially damped oscillator respectively in cases that the bound of the external exciting force is known or unknown.The viability and effectiveness of the above control designs have been validated by numerical simulations.展开更多
In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorbe...In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the展开更多
In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a...In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.展开更多
Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-kno...Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.展开更多
Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to ca...Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.展开更多
Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic ...Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.展开更多
This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analyti...This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.展开更多
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, whi...A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.展开更多
The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric d...The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part I ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness.展开更多
The electrorheological fluid(ERF)is a kind of intelligent material withbright prospects for industry applications, which has viscoelastic characteristic under the appliedelectric field. The dynamic model of a milling ...The electrorheological fluid(ERF)is a kind of intelligent material withbright prospects for industry applications, which has viscoelastic characteristic under the appliedelectric field. The dynamic model of a milling system with an ERF damper is established, and thechaffer suppression mechanism of the ER effect is discussed theoretically. Both the theoreticalstudy and the experimental investigation show that the additional damping and additional stiffnessproduced by the ERF increase with the rise in the strength of electric field E, but their influenceon the cuffing stability is different. Only when both additional damping and additional stiffnesscooperate, the milling chatter can be suppressed quickly and effectively. In additional, an ERFdamper used on the arbor of horizontal spindle milling machine is developed, and a series of millingchatter control experiments are performed. The experimental results show that the milling chaffercan be suppressed effectively by using the ER damper.展开更多
基金supported by the National Science and Technology Major Project,China,the China Scholarship Council(No.202306290109)National Natural Science Foundation of China(Nos.52472456 and 52361165620)。
文摘This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration reduction characteristics are proposed to facilitate the design of the AESDFD.To achieve this,the nonlinear friction force is initially represented as equivalent stiffness and damping coefficients,based on the ball-plate friction model.Second,three evaluation parameters—optimal slipping displacement,loss factor,and controllability—are proposed to reveal the vibration reduction characteristics of the AESDFD,alongside determining the optimal normal force.Subsequently,the finite element method,in conjunction with the ball-plate friction model,is introduced to formulate the governing equation of a low-pressure rotor system equipped with AESDFDs.The steady-state responses of the AESDFDs-rotor system are solved using the harmonic balance method combined with an efficient iteration method.Finally,the solutions are validated on the AESDFDs-rotor system both numerically and experimentally.The results indicate that controllability effectively assesses the vibration reduction performance of the AESDFD and is relatively insensitive to variations in low normal force.Away from the critical speed,the AESDFD suppresses vibration by altering the resonance position of the rotor system through its stiffness coefficient.Near the critical speed,vibration reduction is achieved primarily through energy dissipation by the damping coefficient.If the loss factor is less than one,the stiffness coefficient can diminish the vibration reduction effect of the damping coefficient.Notably,the optimal normal force of the AESDFD achieves optimal vibration reduction effect.This study reveals that changes in rotor system unbalance do not affect the vibration reduction characteristics of the AESDFD,with the same upper limit to the vibration reduction effect of the AESDFD.
基金Supported by National Natural Science Foundation of China(Grant No.62363005).
文摘We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argument by contradiction with the test function techniques,we prove that not only any non-trivial solution blows up in finite time under 0<α<1,N≥1 and p>1,but also any non-trivial solution blows up in finite time underα=0,2≤N≤4 and p being the Strauss exponent.
基金Supported by the National Key Research and Development Program of China(2016 YFA0400200)the National Natural Science Foundation of China(U1738205,U1738206)。
文摘The DArk Matter Particle Explorer(DAMPE)is a space high-energy particle andγ-ray detector whose major scientific goals are the indirect detection of dark matter particles,the origin of cosmic rays and highenergyγ-ray astronomy.Since its successful launch in December 2015,the DAMPE has been operated smoothly in orbit for more than 8 years.The direct measurements of the boron-to-carbon and boron-to-oxygen flux ratios,and the proton+Helium spectrum up to 316 TeV have been obtained,revealing new spectral features with very high significances.The search results ofγ-ray spectral line and fractionally charged particles indicate a good potential of DAMPE for indirect dark matter detection and new physical discovery in space.The DAMPE measurements are expected to significantly advance our understanding of the fundamental problems in astroparticle physics.
基金supported by the National Natural Science Foundation of China(12301272)the Natural Science Foundation of Henan(202300410109)the Cultivation Programme for Young Backbone Teachers in Henan University of Technology,and the Innovative Funds Plan of Henan University of Technology(2020ZKCJ09).
文摘This paper is devoted to the Cauchy problem for the generalized damped Boussinesq equation with a nonlinear source term in the natural energy space.With the help of linear time-space estimates,we establish the local existence and uniqueness of solutions by means of the contraction mapping principle.The global existence and blow-up of the solutions at both subcritical and critical initial energy levels are obtained.Moreover,we construct the sufficient conditions of finite time blow-up of the solutions with arbitrary positive initial energy.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,grant No(44-PRFA-P-107).
文摘This study reports the analytical solution for a generalized rotational pendulum system with gallows and periodic excited forces.The multiple scales method(MSM)is applied to solve the proposed problem.Several types of rotational pendulum oscillators are studied and talked about in detail.These include the forced damped rotating pendulum oscillator with gallows,the damped standard simple pendulum oscillator,and the damped rotating pendulum oscillator without gallows.The MSM first-order approximations for all the cases mentioned are derived in detail.The obtained results are illustrated with concrete numerical examples.The first-order MSM approximations are compared to the fourth-order Runge-Kutta(RK4)numerical approximations.Additionally,the maximum error is estimated for the first-order approximations obtained through the MSM,compared to the numerical approximations obtained by the RK4 method.Furthermore,we conducted a comparative analysis of the outcomes obtained by the used method(MSM)and He-MSM to ascertain their respective levels of precision.The proposed method can be applied to analyze many strong nonlinear oscillatory equations.
文摘In this paper, we consider a class of damped vibration systems with super-quadratic potential. We obtain at least two nonzero periodic solutions through the minimization method and Morse theory. Moreover, if the potential is even with respect to the spatial variables, by applying a minimax type theorem, we can obtain a stronger multiplicity result with the number of solutions linked to the Morse index at zero.
基金National Natural Science Foundation of China under Grant No.51468005 and 51368008Guangxi Natural Science Foundation under Grant No.2014GXNSFAA118315the Innovative Research Team Program of Guangxi University of Science and Technology(2015)
文摘To predict the maximum earthquake response of an SDOF structure with a Maxwell fluid damper or supplemental brace-viscous damper system using the seismic design response spectrum technique,a new approach is presented to determine the first-and second-order equivalent viscous damping and stiffness,the peak responses,and the damper force of the above structure.Based on the fact that the dynamic characteristics of a general linear viscoelastically damped structure are fully determined by its free vibration properties and the relaxation time constants of a Maxwell fluid damper and supplemental brace-viscous damper system in engineering practice are all small,the method of improved multiple time scales and the equivalent criterion in which all free vibration properties are the same are used to obtain the first-and second-order equivalent viscous damping and stiffness of the above structure in closed form.The accuracy of the proposed method is higher and significantly better than that of the modal strain energy method.Furthermore,in the parametric range of the requirements of the Chinese "Code for Seismic Design of Buildings",the error of the proposed second-order equivalent system for the abovementioned engineering structure is not more than 0.5%.
基金supported by the National Natural Science Foundation of China under grant no.42374133the Beijing Nova Program under grant no.2022056+1 种基金the Fundamental Research Funds for the Central Universities under grant no.2462020YXZZ006the Young Elite Scientists Sponsorship Program by CAST(YESS)under grant no.2018QNRC001。
文摘(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.
基金partially supported by the Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (No. I01211200001)LDS 2023 Educational Foundation of The University of Nottingham Ningbo China (No. E06221200002)
文摘The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.
基金the National Science Foundation of Chinathe Doctoral Training of Education Committee of China
文摘This paper gives a dynamic decoupling approach for the analysis of large scale non-classically damped system, in which the complex variable computations were completely avoided not only in solving for the eigenvalue problem but also in the calculation of the dynamic response. The analytical approaches for undamped gyroscopic system, non-classically damped system, including the damped gyroscopic system were unified. Very interesting and useful theoretical results, practical algorithms were obtained which are applicable to both non-defective and defective systems.
基金National Natural Science Foundation of China(No.11802338)
文摘The purpose is to design the control method for a single-degree-of-freedom(SDOF)exponentially damped oscillator.Based on the Lyapunov stability theory,sliding mode control and adaptive sliding mode control have been proposed.Sliding control laws and adaptive sliding laws are designed for exponentially damped oscillator respectively in cases that the bound of the external exciting force is known or unknown.The viability and effectiveness of the above control designs have been validated by numerical simulations.
文摘In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the
文摘In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.
基金State Key Program of Natural Science Foundation of China Under Grant No.50738002
文摘Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.
基金Science and Technology Fund of NWPU Under Grant No. M450211 Seed Fund of NWPU Under Grant No. Z200729
文摘Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
基金Scientific Research Fund of IEM,CEA under Grant Nos.2016B09,2014B12China Natural Science Foundation under Grant Nos.51478442,51408565
文摘Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.
基金973 Program under Grant under Grant No.2012CB723304It was partially supported by the Major Research Plan of the National Natural Science Foundation of China under Grant No.91315301-07+2 种基金in part by Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT13057the Ministry of Education Program for New Century Excellent Talents in University under Grant No.NCET-11-0914the Guangzhou Ram Scholar Program Grant No.10A032D
文摘This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.
基金supported by Senior Visiting Scholarship of Chinese Scholarship Council (No.20H05002)Natural Science Foundation of Education Commission of Jiangsu Province, China (No.03KJB510072)Six Categories of Summit Talents of Jiangsu Province, China (No. 2006194).
文摘A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.
基金Senior Visiting Scholarship of Chinese Scholarship Council (No.20H05002)Jiangsu Provincial Natural Science Foundation of Education Commission of China (No.03KJB510072)Jiangsu Provincial Six Categories of Summit Talents of China (No.2OO6194)
文摘The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part I ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness.
基金This project is supported by Provincial Science and Technology Foundation of Jilin, China(No.963532) Received October 11, 2001
文摘The electrorheological fluid(ERF)is a kind of intelligent material withbright prospects for industry applications, which has viscoelastic characteristic under the appliedelectric field. The dynamic model of a milling system with an ERF damper is established, and thechaffer suppression mechanism of the ER effect is discussed theoretically. Both the theoreticalstudy and the experimental investigation show that the additional damping and additional stiffnessproduced by the ERF increase with the rise in the strength of electric field E, but their influenceon the cuffing stability is different. Only when both additional damping and additional stiffnesscooperate, the milling chatter can be suppressed quickly and effectively. In additional, an ERFdamper used on the arbor of horizontal spindle milling machine is developed, and a series of millingchatter control experiments are performed. The experimental results show that the milling chaffercan be suppressed effectively by using the ER damper.