【目的】矿产资源是人类生存和经济发展的重要物质基础,开展矿山监测、建立矿山监测模型对矿产资源的高效开发和矿区环境保护具有重要意义。针对露天矿区背景复杂、目标尺度多样且小目标聚集的特点,本研究旨在构建兼顾监测精度与效率的...【目的】矿产资源是人类生存和经济发展的重要物质基础,开展矿山监测、建立矿山监测模型对矿产资源的高效开发和矿区环境保护具有重要意义。针对露天矿区背景复杂、目标尺度多样且小目标聚集的特点,本研究旨在构建兼顾监测精度与效率的轻量化模型,以提升矿区目标地物监测的准确性和效率。【方法】现有遥感数据集存在的样本单一、地域局限等问题,因此本文基于0.9 m天地图与1.8 m谷歌影像构建了不同气候背景、大范围和多种地物的六大露天煤矿基地OMTSFD(Open-pit Mine Typical Surface Features Dataset)数据集,提出改进的YOLO11-DAE算法进行模型训练与验证。首先,在骨干网络和特征金字塔中引入C3K2-DBB模块以增强多尺度特征捕获能力;其次,采用ADown模块替换网络下采样卷积,增强了模块对不同特征的表征能力,减少了低对比度场景的细节丢失;最后,采用E_Detect高效检测头降低模型复杂度和参数量,实现模型轻量化。【结果】实验表明,YOLO11-DAE的每秒帧数(Frames Per Second,FPS)为528.100,模型推理速度较快,精确率(Precision,P)、召回率(Recall,R)、综合评价指标(F1-Score,F1)、平均精度均值(Mean Average Precision,mAP)分别达到0.932、0.894、0.913和0.950,显著优于YOLOv5n、YOLOv8n和YOLOv10n算法,相较于YOLOv11n各项指标分别提高7.600%、10.000%、8.800%、8.000%。【结论】YOLO11-DAE算法能够满足矿区实时监测,并适用于多尺度、多背景等复杂场景的目标识别,实现了高精度、低漏检率的监测目标,达到了模型可应用性与实时性的平衡。展开更多
第五代(fifth-generation,5G)移动通信技术的兴起,推动了物联网(Internet of things,IoT)的发展。然而,随着物联网数据传输量的爆发式增长,频谱资源短缺问题越来越严重。频谱感知技术极大的提高了物联网频谱利用率。但是,物联网移动通...第五代(fifth-generation,5G)移动通信技术的兴起,推动了物联网(Internet of things,IoT)的发展。然而,随着物联网数据传输量的爆发式增长,频谱资源短缺问题越来越严重。频谱感知技术极大的提高了物联网频谱利用率。但是,物联网移动通信环境的复杂性高以及信号易畸变的特性,对现有的频谱感知算法提出了重大挑战。因此,提出了一种融合去噪自编码器(denoising autoencoder,DAE)和改进长短时记忆(long short term memory,LSTM)神经网络的智能频谱感知算法。DAE通过编码和解码过程挖掘移动信号的底层结构特征,改进的LSTM频谱感知分类器模型结合过去时刻信息特征对时序信号序列进行分类。与支持向量机(support vector machine,SVM)、循环神经网络(recurrent neural network,RNN)、LeNet5、学习矢量量化(learning vector quantization,LVQ)和Elman算法相比,该算法的感知性能提高了45%。展开更多
文摘【目的】矿产资源是人类生存和经济发展的重要物质基础,开展矿山监测、建立矿山监测模型对矿产资源的高效开发和矿区环境保护具有重要意义。针对露天矿区背景复杂、目标尺度多样且小目标聚集的特点,本研究旨在构建兼顾监测精度与效率的轻量化模型,以提升矿区目标地物监测的准确性和效率。【方法】现有遥感数据集存在的样本单一、地域局限等问题,因此本文基于0.9 m天地图与1.8 m谷歌影像构建了不同气候背景、大范围和多种地物的六大露天煤矿基地OMTSFD(Open-pit Mine Typical Surface Features Dataset)数据集,提出改进的YOLO11-DAE算法进行模型训练与验证。首先,在骨干网络和特征金字塔中引入C3K2-DBB模块以增强多尺度特征捕获能力;其次,采用ADown模块替换网络下采样卷积,增强了模块对不同特征的表征能力,减少了低对比度场景的细节丢失;最后,采用E_Detect高效检测头降低模型复杂度和参数量,实现模型轻量化。【结果】实验表明,YOLO11-DAE的每秒帧数(Frames Per Second,FPS)为528.100,模型推理速度较快,精确率(Precision,P)、召回率(Recall,R)、综合评价指标(F1-Score,F1)、平均精度均值(Mean Average Precision,mAP)分别达到0.932、0.894、0.913和0.950,显著优于YOLOv5n、YOLOv8n和YOLOv10n算法,相较于YOLOv11n各项指标分别提高7.600%、10.000%、8.800%、8.000%。【结论】YOLO11-DAE算法能够满足矿区实时监测,并适用于多尺度、多背景等复杂场景的目标识别,实现了高精度、低漏检率的监测目标,达到了模型可应用性与实时性的平衡。
文摘第五代(fifth-generation,5G)移动通信技术的兴起,推动了物联网(Internet of things,IoT)的发展。然而,随着物联网数据传输量的爆发式增长,频谱资源短缺问题越来越严重。频谱感知技术极大的提高了物联网频谱利用率。但是,物联网移动通信环境的复杂性高以及信号易畸变的特性,对现有的频谱感知算法提出了重大挑战。因此,提出了一种融合去噪自编码器(denoising autoencoder,DAE)和改进长短时记忆(long short term memory,LSTM)神经网络的智能频谱感知算法。DAE通过编码和解码过程挖掘移动信号的底层结构特征,改进的LSTM频谱感知分类器模型结合过去时刻信息特征对时序信号序列进行分类。与支持向量机(support vector machine,SVM)、循环神经网络(recurrent neural network,RNN)、LeNet5、学习矢量量化(learning vector quantization,LVQ)和Elman算法相比,该算法的感知性能提高了45%。