Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Modern electric traction networks(ETN)are equipped with automated systems for commercial accounting of power consumption(ASCAPC),which allows solving properly the problems of enhancing the energy efficiency of transpo...Modern electric traction networks(ETN)are equipped with automated systems for commercial accounting of power consumption(ASCAPC),which allows solving properly the problems of enhancing the energy efficiency of transportation processes.Energy efficiency of ETNs is defined as the amount of power losses in ETN components:overhead catenary systems and traction transformers.Due to the instability of traction loads and changes in their location in space,the electric traction network is different from the general network.It is necessary to develop an approach for loss analysis in traction networks and in transformers of traction substations.To solve this prob-lem,a balance-based technique for power loss calculation in traction networks based on ASCAPC data is proposed.First,the balance-based technique presented here breaks down the power consumption of the train by source.Then,calculates technical power losses in 25 and 225 kV traction networks as well as in traction transformers.Last,the technique is implemented in the form of an algorithm tested on real-life data and it is ready for practical use.展开更多
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d...Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.展开更多
Flexible interconnection devices(FIDs)significantly enhance the regulation and management of complex power flows in distribution networks.Voltage source converter(VSC)-based FIDs,in particular,are pivotal for increasi...Flexible interconnection devices(FIDs)significantly enhance the regulation and management of complex power flows in distribution networks.Voltage source converter(VSC)-based FIDs,in particular,are pivotal for increasing system reliability and operational efficiency.These devices are crucial in supporting the extensive incorporation of electric vehicles(EVs)and renewable energy sources(RESs)into new,load-centric environments.This study evaluates four unique FID-based configurations for distribution network interconnections,revealing their distinctive features.We developed a comprehensive evaluation framework and tool by integrating the analytic hierarchy process(AHP)and fuzzy comprehensive evaluation(FCE),which includes five key performance indicators to assess these configurations.The study identifies the optimal application scenarios for each configuration and discusses their roles in enabling the seamless integration of EVs and RESs.The findings provide essential insights and guidelines for the design and implementation of adaptable,interconnected distribution networks that are equipped to meet the growing demands of future urban environments.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
Further development of earthquake equipments is closely associated with that of computer technology. Because Embedded PC104 module has the equivalent functions of PC,it has been widely used in recent years,and can pro...Further development of earthquake equipments is closely associated with that of computer technology. Because Embedded PC104 module has the equivalent functions of PC,it has been widely used in recent years,and can provide a new and flexible hardware design environment,but its applications in observation instruments of earth-quake precursor are rare. The present paper introduces in detail the realization of a networked geo-electrical meter by applying the low price,high reliability embedded PC104 industrial computer.展开更多
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian ne...Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.展开更多
Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The cur...Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The current literature tends to focus on the rela-tionship between firms and their shareholders,while paying less attention to the connections between firms with the same shareholders.This article identifies two types of network spillover effects,intra-city network effect and inter-city network effect,by visualizing the co-ownership networks in China’s electric vehicle(EV)industry.We find that firms with the same shareholders,which are defined as co-owned EV firms,are more innovative than non-co-owned ones.Furthermore,there are two dominant types of firm co-ownership ties formed by corporate and financial institution shareholders.While corporate shareholders help exploiting local tacit knowledge,financial institutions are more active in bridging inter-city connections.The conclusion is confirmed at both firm and city levels.This paper theor-izes the firm co-ownership network as a new form of institutional proximity and tested the result empirically.For policy consideration,we have emphasized the importance of building formal or informal inter-firm network,and the government should further enhance the knowledge flow channel by institutional construction.展开更多
Accurate mapping of soil salinity and recognition of its influencing factors are essential for sustainable crop production and soil health. Although the influencing factors have been used to improve the mapping accura...Accurate mapping of soil salinity and recognition of its influencing factors are essential for sustainable crop production and soil health. Although the influencing factors have been used to improve the mapping accuracy of soil salinity, few studies have considered both aspects of spatial variation caused by the influencing factors and spatial autocorrelations for mapping. The objective of this study was to demonstrate that the ordinary kriging combined with back-propagation network(OK_BP), considering the two aspects of spatial variation, which can benefit the improvement of the mapping accuracy of soil salinity. To test the effectiveness of this approach, 70 sites were sampled at two depths(0–30 and 30–50 cm) in Ningxia Hui Autonomous Region, China. Ordinary kriging(OK), back-propagation network(BP) and regression kriging(RK) were used in comparison analysis; the root mean square error(RMSE), relative improvement(RI) and the decrease in estimation imprecision(DIP) were used to judge the mapping quality. Results showed that OK_BP avoided the both underestimation and overestimation of the higher and lower values of interpolation surfaces. OK_BP revealed more details of the spatial variation responding to influencing factors, and provided more flexibility for incorporating various correlated factors in the mapping. Moreover, OK_BP obtained better results with respect to the reference methods(i.e., OK, BP, and RK) in terms of the lowest RMSE, the highest RI and DIP. Thus, it is concluded that OK_BP is an effective method for mapping soil salinity with a high accuracy.展开更多
Phase change materials(PCMs)are widely considered as promising energy storage materials for solar/electro-thermal energy storage.Nevertheless,the inherent low thermal/electrical conductivities of most PCMs limit their...Phase change materials(PCMs)are widely considered as promising energy storage materials for solar/electro-thermal energy storage.Nevertheless,the inherent low thermal/electrical conductivities of most PCMs limit their energy conversion efficiencies,hindering their practical applications.Herein,we fabricate a highly thermally/electrically conductive solid-solid phase change composite(PCC)enabled by forming aligned graphite networks through pressing the mixture of the trimethylolethane and porous expanded graphite(EG).Experiments indicate that both the thermal and electrical conductivities of the PCC increase with increasing mass proportion of the EG because the aligned graphite networks establish highly conductive pathways.Meanwhile,the PCC4 sample with the EG proportion of 20wt%can achieve a high thermal conductivity of 12.82±0.38W·m^(-1)·K^(-1)and a high electrical conductivity of 4.11±0.02S·cm^(-1)in the lengthwise direction.Furthermore,a solar-thermal energy storage device incorporating the PCC4,a solar selective absorber,and a highly transparent glass is developed,which reaches a high solar-thermal efficiency of 77.30±2.71%under 3.0 suns.Moreover,the PCC4 can also reach a high electro-thermal efficiency of 91.62±3.52%at a low voltage of 3.6V,demonstrating its superior electro-thermal storage performance.Finally,stability experiments indicate that PCCs exhibit stabilized performance in prolonged TES operations.Overall,this work offers highly conductive and cost-effective PCCs,which are suitable for large-scale and efficient solar/electro-thermal energy storage.展开更多
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ...Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.展开更多
Electrical property is an important problem in the field of natural science and physics, which usually involves potential, current and resistance in the electric circuit. We investigate the electrical properties of an...Electrical property is an important problem in the field of natural science and physics, which usually involves potential, current and resistance in the electric circuit. We investigate the electrical properties of an arbitrary hammock network, which has not been resolved before, and propose the exact potential formula of an arbitrary m × n hammock network by means of the Recursion-Transform method with current parameters(RT-I) pioneered by one of us [Z. Z. Tan, Phys. Rev. E 91(2015) 052122], and the branch currents and equivalent resistance of the network are derived naturally. Our key technique is to setting up matrix equations and making matrix transformation, the potential formula derived is a meaningful discovery, which deduces many novel applications. The discovery of potential formula of the hammock network provides new theoretical tools and techniques for related scientific research.展开更多
The power system frequency fluctuations could be captured by digital recordings and extracted to compare with a reference database for forensic timestamp verification.It is known as the Electric Network Frequency(ENF)...The power system frequency fluctuations could be captured by digital recordings and extracted to compare with a reference database for forensic timestamp verification.It is known as the Electric Network Frequency(ENF)criterion,enabled by the properties of random fluctuations and intra-grid consistency.In essence,this is a task of matching a short random sequence within a long reference,whose accuracy is mainly concerned with whether this match could be uniquely correct.In this paper,we comprehensively analyze the factors affecting the reliability of ENF matching,including the length of test recording,length of reference,temporal resolution,and Signal-to-Noise Ratio(SNR).For synthetic analysis,we incorporate the first-order AutoRegressive(AR)ENF model and propose an efficient Time-Frequency Domain noisy ENF synthesis method.Then,the reliability analysis schemes for both synthetic and real-world data are respectively proposed.Through a comprehensive study,we quantitatively reveal that while the SNR is an important external factor to determine whether timestamp verification is viable,the length of test recording is the most important inherent factor,followed by the length of reference.However,the temporal resolution has little impact on performance.Finally,a practical workflow of the ENF-based audio timestamp verification system is proposed,incorporating the discovered results.展开更多
The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthe...The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.展开更多
We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries,which contains multiple topological network models such as the regular cylindrical network,cobweb netwo...We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries,which contains multiple topological network models such as the regular cylindrical network,cobweb network,globe network,and so on.We deduce three new and concise analytical formulae of potential and equivalent resistance for the complex network of cylinders by using the RT-V method(a recursion-transform method based on node potentials).To illustrate the multiplicity of the results we give a series of special cases.Interestingly,the results obtained from the resistance formulas of cobweb network and globe network obtained are different from the results of previous studies,which indicates that our research work creates new research ideas and techniques.As a byproduct of the study,a new mathematical identity is discovered in the comparative study.展开更多
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein...Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.展开更多
The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage...The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.展开更多
In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and th...In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up.The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy.Aged at 470-510 ℃ for 4-1 h,the optimal combinations of hardness 110-117(HV) and electrical conductivity 40.6-37.7 S/m are available respectively.展开更多
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
基金the state assign-ment of Ministry of Science and Higher Education of the Russian Federation(theme No 123102000012-2“Compre-hensive study of aerodynamic characteristics of plasma systems of thermochemical fuel preparation”,agreement No 075-03-2023-028/1 of 05.10.2023).
文摘Modern electric traction networks(ETN)are equipped with automated systems for commercial accounting of power consumption(ASCAPC),which allows solving properly the problems of enhancing the energy efficiency of transportation processes.Energy efficiency of ETNs is defined as the amount of power losses in ETN components:overhead catenary systems and traction transformers.Due to the instability of traction loads and changes in their location in space,the electric traction network is different from the general network.It is necessary to develop an approach for loss analysis in traction networks and in transformers of traction substations.To solve this prob-lem,a balance-based technique for power loss calculation in traction networks based on ASCAPC data is proposed.First,the balance-based technique presented here breaks down the power consumption of the train by source.Then,calculates technical power losses in 25 and 225 kV traction networks as well as in traction transformers.Last,the technique is implemented in the form of an algorithm tested on real-life data and it is ready for practical use.
基金University of Jeddah,Jeddah,Saudi Arabia,grant No.(UJ-23-SRP-10).
文摘Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.
基金supported by the Science and Technology Project of the China Southern Power Grid Co.,Ltd.(Project number:SZKJXM20230085).
文摘Flexible interconnection devices(FIDs)significantly enhance the regulation and management of complex power flows in distribution networks.Voltage source converter(VSC)-based FIDs,in particular,are pivotal for increasing system reliability and operational efficiency.These devices are crucial in supporting the extensive incorporation of electric vehicles(EVs)and renewable energy sources(RESs)into new,load-centric environments.This study evaluates four unique FID-based configurations for distribution network interconnections,revealing their distinctive features.We developed a comprehensive evaluation framework and tool by integrating the analytic hierarchy process(AHP)and fuzzy comprehensive evaluation(FCE),which includes five key performance indicators to assess these configurations.The study identifies the optimal application scenarios for each configuration and discusses their roles in enabling the seamless integration of EVs and RESs.The findings provide essential insights and guidelines for the design and implementation of adaptable,interconnected distribution networks that are equipped to meet the growing demands of future urban environments.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金"The Study of ELF Receiver"from Ministry of Science and Technology (2001BA601B03-01-03).
文摘Further development of earthquake equipments is closely associated with that of computer technology. Because Embedded PC104 module has the equivalent functions of PC,it has been widely used in recent years,and can provide a new and flexible hardware design environment,but its applications in observation instruments of earth-quake precursor are rare. The present paper introduces in detail the realization of a networked geo-electrical meter by applying the low price,high reliability embedded PC104 industrial computer.
基金supported by the National Natural Science Foundation of China(Grant No.41374118)the Research Fund for the Higher Education Doctoral Program of China(Grant No.20120162110015)+3 种基金the China Postdoctoral Science Foundation(Grant No.2015M580700)the Hunan Provincial Natural Science Foundation,the China(Grant No.2016JJ3086)the Hunan Provincial Science and Technology Program,China(Grant No.2015JC3067)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.15B138)
文摘Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
基金Under the auspices of Natural Science Foundation of China(No.42122006,41971154)。
文摘Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The current literature tends to focus on the rela-tionship between firms and their shareholders,while paying less attention to the connections between firms with the same shareholders.This article identifies two types of network spillover effects,intra-city network effect and inter-city network effect,by visualizing the co-ownership networks in China’s electric vehicle(EV)industry.We find that firms with the same shareholders,which are defined as co-owned EV firms,are more innovative than non-co-owned ones.Furthermore,there are two dominant types of firm co-ownership ties formed by corporate and financial institution shareholders.While corporate shareholders help exploiting local tacit knowledge,financial institutions are more active in bridging inter-city connections.The conclusion is confirmed at both firm and city levels.This paper theor-izes the firm co-ownership network as a new form of institutional proximity and tested the result empirically.For policy consideration,we have emphasized the importance of building formal or informal inter-firm network,and the government should further enhance the knowledge flow channel by institutional construction.
基金Under the auspices of the National Natural Science Foundation of China(No.41571217)the National Key Research and Development Program of China(No.2016YFD0300801)
文摘Accurate mapping of soil salinity and recognition of its influencing factors are essential for sustainable crop production and soil health. Although the influencing factors have been used to improve the mapping accuracy of soil salinity, few studies have considered both aspects of spatial variation caused by the influencing factors and spatial autocorrelations for mapping. The objective of this study was to demonstrate that the ordinary kriging combined with back-propagation network(OK_BP), considering the two aspects of spatial variation, which can benefit the improvement of the mapping accuracy of soil salinity. To test the effectiveness of this approach, 70 sites were sampled at two depths(0–30 and 30–50 cm) in Ningxia Hui Autonomous Region, China. Ordinary kriging(OK), back-propagation network(BP) and regression kriging(RK) were used in comparison analysis; the root mean square error(RMSE), relative improvement(RI) and the decrease in estimation imprecision(DIP) were used to judge the mapping quality. Results showed that OK_BP avoided the both underestimation and overestimation of the higher and lower values of interpolation surfaces. OK_BP revealed more details of the spatial variation responding to influencing factors, and provided more flexibility for incorporating various correlated factors in the mapping. Moreover, OK_BP obtained better results with respect to the reference methods(i.e., OK, BP, and RK) in terms of the lowest RMSE, the highest RI and DIP. Thus, it is concluded that OK_BP is an effective method for mapping soil salinity with a high accuracy.
基金supported by the Natural Science Foundation of Hunan Province(No.2024JJ4059)Changsha Outstanding Innovative Youth Training Program(No.kq2306010)+1 种基金National Natural Science Foundation of China(No.52176093)the Central South University Innovation-Driven Research Programme(No.2023CXQD055).
文摘Phase change materials(PCMs)are widely considered as promising energy storage materials for solar/electro-thermal energy storage.Nevertheless,the inherent low thermal/electrical conductivities of most PCMs limit their energy conversion efficiencies,hindering their practical applications.Herein,we fabricate a highly thermally/electrically conductive solid-solid phase change composite(PCC)enabled by forming aligned graphite networks through pressing the mixture of the trimethylolethane and porous expanded graphite(EG).Experiments indicate that both the thermal and electrical conductivities of the PCC increase with increasing mass proportion of the EG because the aligned graphite networks establish highly conductive pathways.Meanwhile,the PCC4 sample with the EG proportion of 20wt%can achieve a high thermal conductivity of 12.82±0.38W·m^(-1)·K^(-1)and a high electrical conductivity of 4.11±0.02S·cm^(-1)in the lengthwise direction.Furthermore,a solar-thermal energy storage device incorporating the PCC4,a solar selective absorber,and a highly transparent glass is developed,which reaches a high solar-thermal efficiency of 77.30±2.71%under 3.0 suns.Moreover,the PCC4 can also reach a high electro-thermal efficiency of 91.62±3.52%at a low voltage of 3.6V,demonstrating its superior electro-thermal storage performance.Finally,stability experiments indicate that PCCs exhibit stabilized performance in prolonged TES operations.Overall,this work offers highly conductive and cost-effective PCCs,which are suitable for large-scale and efficient solar/electro-thermal energy storage.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 62171312 and 61771330)the Tianjin Municipal Education Commission Scientific Research Project (Grant No. 2020KJ114)。
文摘Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No.BK20161278
文摘Electrical property is an important problem in the field of natural science and physics, which usually involves potential, current and resistance in the electric circuit. We investigate the electrical properties of an arbitrary hammock network, which has not been resolved before, and propose the exact potential formula of an arbitrary m × n hammock network by means of the Recursion-Transform method with current parameters(RT-I) pioneered by one of us [Z. Z. Tan, Phys. Rev. E 91(2015) 052122], and the branch currents and equivalent resistance of the network are derived naturally. Our key technique is to setting up matrix equations and making matrix transformation, the potential formula derived is a meaningful discovery, which deduces many novel applications. The discovery of potential formula of the hammock network provides new theoretical tools and techniques for related scientific research.
基金funded by National Natural Science Foundation of China(No.62272347,62072343,and 61802284)National Key Research Development Program of China(No.2019QY(Y)0206).
文摘The power system frequency fluctuations could be captured by digital recordings and extracted to compare with a reference database for forensic timestamp verification.It is known as the Electric Network Frequency(ENF)criterion,enabled by the properties of random fluctuations and intra-grid consistency.In essence,this is a task of matching a short random sequence within a long reference,whose accuracy is mainly concerned with whether this match could be uniquely correct.In this paper,we comprehensively analyze the factors affecting the reliability of ENF matching,including the length of test recording,length of reference,temporal resolution,and Signal-to-Noise Ratio(SNR).For synthetic analysis,we incorporate the first-order AutoRegressive(AR)ENF model and propose an efficient Time-Frequency Domain noisy ENF synthesis method.Then,the reliability analysis schemes for both synthetic and real-world data are respectively proposed.Through a comprehensive study,we quantitatively reveal that while the SNR is an important external factor to determine whether timestamp verification is viable,the length of test recording is the most important inherent factor,followed by the length of reference.However,the temporal resolution has little impact on performance.Finally,a practical workflow of the ENF-based audio timestamp verification system is proposed,incorporating the discovered results.
基金the National Science and Technology Major Project of China(No.2014ZX04014-011)
文摘The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.
基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161278).
文摘We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries,which contains multiple topological network models such as the regular cylindrical network,cobweb network,globe network,and so on.We deduce three new and concise analytical formulae of potential and equivalent resistance for the complex network of cylinders by using the RT-V method(a recursion-transform method based on node potentials).To illustrate the multiplicity of the results we give a series of special cases.Interestingly,the results obtained from the resistance formulas of cobweb network and globe network obtained are different from the results of previous studies,which indicates that our research work creates new research ideas and techniques.As a byproduct of the study,a new mathematical identity is discovered in the comparative study.
基金Korea Institute of Energy Technology Evaluation and Planning,Grant/Award Number:20214000000320Samsung Research Funding&Incubation Center of Samsung Electronics,Grant/Award Number:SRFC-MA1901-06。
文摘Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.
基金supported by the Science and Technology Project of North China Electric Power Research Institute,which is“Research on Key Technologies for Power Quality Evaluation and Improvement of New Distribution Network Based on Collaborative Interaction of Source-Network-Load-Storage”(KJZ2022016).
文摘The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.
基金Project(2006AA03Z528) supported by the National High-Tech Research and Development Program of ChinaProject(102102210174) supported by the Science and Technology Research Project of Henan Province,ChinaProject(2008ZDYY005) supported by Special Fund for Important Forepart Research in Henan University of Science and Technology
文摘In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up.The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy.Aged at 470-510 ℃ for 4-1 h,the optimal combinations of hardness 110-117(HV) and electrical conductivity 40.6-37.7 S/m are available respectively.