In this paper, the limitations of the single cube D-optimal design scheme is studied, and a double cube D-optimal design scheme is suggested in order to overcome the limitations. For a sort of incomplete cubic polynom...In this paper, the limitations of the single cube D-optimal design scheme is studied, and a double cube D-optimal design scheme is suggested in order to overcome the limitations. For a sort of incomplete cubic polynomials, the test design of the identification is developed with this new scheme, and the comparation with the single cube scheme is also given. This scheme is shown to be perfectly suitable for the optimal identification of the complete cubic polynomials.展开更多
Logistic regression models for binary response problems are present in a wide variety of industrial, biological, social and medical experiments;therefore, optimum designs are a valuable tool for experimenters, leading...Logistic regression models for binary response problems are present in a wide variety of industrial, biological, social and medical experiments;therefore, optimum designs are a valuable tool for experimenters, leading to estimators of parameters with minimum variance. Our interest in this contribution is to provide explicit formulae for the D-optimal designs as a function of the unknown parameters for the logistic model where q is an indicator variable. We have considered an experiment based on the dose-response to a fly insecticide in which males and females respond in different ways, proposed in Atkinson et al. (1995) [1]. To find the D-optimal designs, this problem has been reduced to a canonical form.展开更多
Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were perfo...Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.展开更多
This paper investigates the optimal design problem for the prediction of the individual parameters in hierarchical linear models with heteroscedastic errors.An equivalence theorem is established to characterize D-opti...This paper investigates the optimal design problem for the prediction of the individual parameters in hierarchical linear models with heteroscedastic errors.An equivalence theorem is established to characterize D-optimality of designs for the prediction based on the mean squared error matrix.The admissibility of designs is also considered and a sufficient condition to simplify the design problem is obtained.The results obtained are illustrated in terms of a simple linear model with random slope and heteroscedastic errors.展开更多
This paper considers a linear regression model involving both quantitative and qualitative factors and an m-dimensional response variable y. The main purpose of this paper is to investigate D-optimal designs when the ...This paper considers a linear regression model involving both quantitative and qualitative factors and an m-dimensional response variable y. The main purpose of this paper is to investigate D-optimal designs when the levels of the qualitative factors interact with the levels of the quantitative factors. Under a general covariance structure of the response vector y, here we establish that the determinant of the information matrix of a product design can be separated into two parts corresponding to the two marginal designs. Moreover, it is also proved that D-optimal designs do not depend on the covariance structure if we assume hierarchically ordered system of regression models.展开更多
[Objectives] To study the optimal proportion and formulation process of Jinweng granule,the physicochemical properties of the optimal preparing process was observed. [Methods] Adopting the D-optimal mixture design met...[Objectives] To study the optimal proportion and formulation process of Jinweng granule,the physicochemical properties of the optimal preparing process was observed. [Methods] Adopting the D-optimal mixture design method,selecting the mixing ratio of starch,dextrin,fumei powder and lactose as tested factors,and selecting the most significant factor between hygroscopicity,formability,solubility as the evaluation index,the optimal proportion of filler was examined by system experiments. Granularity,solubility,the angle of repose,and critical relative humidity( CRH) were used to evaluate the optimal proportion and formulation process of Jinweng granule. [Results]The optimal prescription of Jinweng granule is extract∶ starch∶ dextrin∶ lactose∶ fumei powder( 1∶ 0. 5∶ 0. 05∶ 0. 3∶ 0. 15),and the binder was consisted of 1% sodium carboxymethylcellulose( CMC) slurry and 3% starch syrup. The CRH of the optimum formulation process of granule is 72%,and the fluidity,solubility and granularity were qualified. [Conclusions] The process model established by D-optimum mixture design has good predictability,and the granule prepared by the optimal proportion has good repeatability,and the granule proportion and formulation process is stable and reliable.展开更多
An optimized formulation of a sustained release tablet of Gliclazide was developed. The use of Doptimal design with a polynomial statistical model to analyze dissolution data reduced the number of laboratory tests req...An optimized formulation of a sustained release tablet of Gliclazide was developed. The use of Doptimal design with a polynomial statistical model to analyze dissolution data reduced the number of laboratory tests required to obtain an optimal dosage form. The final formulation contained 22 mg of Methocel®E15LV, 16.5 mg Methocel®E15 and 10.0 mg of Dibasic Calcium Phosphate per 30 mg Gliclazide sustained release tablet. Dissolution studies performed on tablets from 5000 tablet test batches released greater than 90 percent of loaded drug in eight hours. Drug release from the optimized tablets followed a pattern more closely similar to zero-order than other mechanisms of drug release tested. Storage of tablets in accelerated and ambient conditions for 6 and 12 months respectively did not alter any of the physico-chemical properties, drug release or the drug release rate compared to initial observations and dissolution data of the prepared tablets. The addition of potassium phosphate and monosodium phosphate to the tablet reduced the effect pH has on Gliclazide dissolution compared to the commercially available product.展开更多
An optimized formulation of capsules containing Lansoprazole enteric-coated pellets using D-Optimal design with a polynomial statistical model were prepared by using Eudragit?L100 as an enteric coated polymer to provi...An optimized formulation of capsules containing Lansoprazole enteric-coated pellets using D-Optimal design with a polynomial statistical model were prepared by using Eudragit?L100 as an enteric coated polymer to provide resistance to simulated gastric acid dissolution in buffer media. D-Optimal experimental design was used to determine the optimal level for three coating layers that were applied to formulate the enteric-coated pellets including a drug loading layer, a sub-coating, and an outer enteric coating. Dissolution studies were performed on the prepared Lansoprazole capsules. Less than 5 percent of Lansoprazole was released in 60 minutes in an acidic dissolution medium (pH 1.2) and greater than 90 percent of active ingredient was released in the next 60 minutes in a buffer dissolution medium (pH 6.8). The Lansoprazole capsules were stable with no observable change in physico-chemical properties in accelerated and normal storage conditions for 6 and 18 months, respectively. The pharmacokinetic parameters Cmax, Tmax, AUC0-t, and AUC0-∞ were determined after administration of the D-Optimal design optimized capsules of LPZ to healthy beagle dogs and were statistically compared to Gastevin? capsules as a reference (KRKA, Slovenia) using the non-compartmental method with the aid of WinNonlin 5.2 software. The analysis of variance showed that the two formulations did not demonstrate bioequivalence using a 90% confidence interval range (80% - 120%) of Cmax, AUC0-t, and AUC0-∞. No significant difference in Tmax was found at the 0.95 significance level using the Wilcoxon signed-rank test. D-Optimal Experimental Design provided definitive direction for an optimal formulation of capsules containing enteric-coated pellets of lansoprazole loaded within the coating of pellets that provided similar bioequivalence to Gastevin.展开更多
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI ...Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI chip to solve these AI tasks efficiently and powerfully.Rapid progress has been made in the field of advanced chips recently,such as the development of photonic computing,the advancement of the quantum processors,the boost of the biomimetic chips,and so on.Designs tactics of the advanced chips can be conducted with elaborated consideration of materials,algorithms,models,architectures,and so on.Though a few reviews present the development of the chips from their unique aspects,reviews in the view of the latest design for advanced and AI chips are few.Here,the newest development is systematically reviewed in the field of advanced chips.First,background and mechanisms are summarized,and subsequently most important considerations for co-design of the software and hardware are illustrated.Next,strategies are summed up to obtain advanced and AI chips with high excellent performance by taking the important information processing steps into consideration,after which the design thought for the advanced chips in the future is proposed.Finally,some perspectives are put forward.展开更多
This paper presents a novel experimental design to greatly improve the calibration accuracy of the acceleration-insensitive bias and the acceleration-sensitive bias of the dynamically tuned gyroscopes(DTGs).In order...This paper presents a novel experimental design to greatly improve the calibration accuracy of the acceleration-insensitive bias and the acceleration-sensitive bias of the dynamically tuned gyroscopes(DTGs).In order to reduce experimental cost,the D-optimal criteria with constraints are constructed.The turntable positions and the number of test points are chosen to build D-optimal experimental designs.The D-optimal experimental designs are tested by multi-position calibration experiment for tactical-grade DTGs.Test results show that,with the same cost,the fit uncertainty is reduced by about 50% by using the D-optimal 8-position experimental procedure,compared to using a defacto standard experimental procedure in ANSI/IEEE Std 813-1988.Furthermore,the new experimental procedure almost achieves optimal accuracy with only 12-position which is half the cost of the widely adopted 24-position experimental procedure for achieving optimal accuracy.展开更多
To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time di...To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time difference sensors of the UAV swarm to locate target radiation sources.Firstly,a TDOA model for the target is set up for the UAV swarm under the condition that the error variance varies with the received signal-to-noise ratio.The accuracy of the positioning error is analyzed by geometric dilution of precision(GDOP).The D-optimality criterion of the positioning model is theoretically derived.The target is positioned and settled,and the maximum value of the Fisher information matrix determinant is used as the optimization objective function to optimize the track of the UAV in real time.Simulation results show that the track optimization improves the positioning accuracy and stability of the UAV swarm to the target.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
This study investigated the potential utility of poly (sodium N-undecanoyl-L-leucyl-valinate) (poly-L-SULV), poly (sodium N-undecanoyl-L-leucyl-alanate) (poly-L-SULA), and poly (sodium N-undecanoyl-glycinate) (poly-SU...This study investigated the potential utility of poly (sodium N-undecanoyl-L-leucyl-valinate) (poly-L-SULV), poly (sodium N-undecanoyl-L-leucyl-alanate) (poly-L-SULA), and poly (sodium N-undecanoyl-glycinate) (poly-SUG) molecular micelles (MMs) as chelators for heavy metal (Cd, Cr, Cu, Co, and Ni) ion remediation of kaolinite clay using D-optimum experimental design. D-optimum experimental design was employed to simultaneously investigate the influence of design variables such as the buffer pH, chelator concentration, and centrifuge speed to evaluate the optimum conditions and to reduce the time and cost of metal ion remediation. The partition coefficients of the metal ion concentrations between the kaolinite clay and chelator equilibrium were also evaluated. In addition, the influence of metal ion concentrations on the remediation capability of the chelators was evaluated by conducting remediation studies at four different (10 ppm, 40 ppm, 60 ppm, and 80 ppm) metal ion concentrations. In general, the results of the remediation efficiency and partition coefficients obtained in this study are highly metal ion dependent and also dependent upon the chelator used for the remediation. Specifically, the remediation efficiency of the molecular micelles was found to be comparable to or better than the corresponding remediation efficiency obtained when SDS or EDTA was used for the remediation. However, at optimum conditions, poly-SULV and poly-L-SULA molecular micelle chelators demonstrated superior remediation efficiencies for Cr, with remediation efficiency of 99.9 ± 8.7% and 99.1 ± 0.7%, respectively.展开更多
文摘In this paper, the limitations of the single cube D-optimal design scheme is studied, and a double cube D-optimal design scheme is suggested in order to overcome the limitations. For a sort of incomplete cubic polynomials, the test design of the identification is developed with this new scheme, and the comparation with the single cube scheme is also given. This scheme is shown to be perfectly suitable for the optimal identification of the complete cubic polynomials.
文摘Logistic regression models for binary response problems are present in a wide variety of industrial, biological, social and medical experiments;therefore, optimum designs are a valuable tool for experimenters, leading to estimators of parameters with minimum variance. Our interest in this contribution is to provide explicit formulae for the D-optimal designs as a function of the unknown parameters for the logistic model where q is an indicator variable. We have considered an experiment based on the dose-response to a fly insecticide in which males and females respond in different ways, proposed in Atkinson et al. (1995) [1]. To find the D-optimal designs, this problem has been reduced to a canonical form.
文摘Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.
基金supported by NSFC Grant(11871143,11971318)the Fundamental Research Funds for the Central UniversitiesShanghai Rising-Star Program(No.20QA1407500).
文摘This paper investigates the optimal design problem for the prediction of the individual parameters in hierarchical linear models with heteroscedastic errors.An equivalence theorem is established to characterize D-optimality of designs for the prediction based on the mean squared error matrix.The admissibility of designs is also considered and a sufficient condition to simplify the design problem is obtained.The results obtained are illustrated in terms of a simple linear model with random slope and heteroscedastic errors.
基金supported by the National Natural Science Foundation of China (Nos.11971318, 11871143)the Fundamental Research Funds for the Central Universities (No.2232020D-38)。
文摘This paper considers a linear regression model involving both quantitative and qualitative factors and an m-dimensional response variable y. The main purpose of this paper is to investigate D-optimal designs when the levels of the qualitative factors interact with the levels of the quantitative factors. Under a general covariance structure of the response vector y, here we establish that the determinant of the information matrix of a product design can be separated into two parts corresponding to the two marginal designs. Moreover, it is also proved that D-optimal designs do not depend on the covariance structure if we assume hierarchically ordered system of regression models.
基金Supported by Public Welfare and Industry Special Fund Project of the Ministry of Agriculture(201303040-05)Natural Science Foundation Project of CQCSTC(2013FYF110600)
文摘[Objectives] To study the optimal proportion and formulation process of Jinweng granule,the physicochemical properties of the optimal preparing process was observed. [Methods] Adopting the D-optimal mixture design method,selecting the mixing ratio of starch,dextrin,fumei powder and lactose as tested factors,and selecting the most significant factor between hygroscopicity,formability,solubility as the evaluation index,the optimal proportion of filler was examined by system experiments. Granularity,solubility,the angle of repose,and critical relative humidity( CRH) were used to evaluate the optimal proportion and formulation process of Jinweng granule. [Results]The optimal prescription of Jinweng granule is extract∶ starch∶ dextrin∶ lactose∶ fumei powder( 1∶ 0. 5∶ 0. 05∶ 0. 3∶ 0. 15),and the binder was consisted of 1% sodium carboxymethylcellulose( CMC) slurry and 3% starch syrup. The CRH of the optimum formulation process of granule is 72%,and the fluidity,solubility and granularity were qualified. [Conclusions] The process model established by D-optimum mixture design has good predictability,and the granule prepared by the optimal proportion has good repeatability,and the granule proportion and formulation process is stable and reliable.
文摘An optimized formulation of a sustained release tablet of Gliclazide was developed. The use of Doptimal design with a polynomial statistical model to analyze dissolution data reduced the number of laboratory tests required to obtain an optimal dosage form. The final formulation contained 22 mg of Methocel®E15LV, 16.5 mg Methocel®E15 and 10.0 mg of Dibasic Calcium Phosphate per 30 mg Gliclazide sustained release tablet. Dissolution studies performed on tablets from 5000 tablet test batches released greater than 90 percent of loaded drug in eight hours. Drug release from the optimized tablets followed a pattern more closely similar to zero-order than other mechanisms of drug release tested. Storage of tablets in accelerated and ambient conditions for 6 and 12 months respectively did not alter any of the physico-chemical properties, drug release or the drug release rate compared to initial observations and dissolution data of the prepared tablets. The addition of potassium phosphate and monosodium phosphate to the tablet reduced the effect pH has on Gliclazide dissolution compared to the commercially available product.
文摘An optimized formulation of capsules containing Lansoprazole enteric-coated pellets using D-Optimal design with a polynomial statistical model were prepared by using Eudragit?L100 as an enteric coated polymer to provide resistance to simulated gastric acid dissolution in buffer media. D-Optimal experimental design was used to determine the optimal level for three coating layers that were applied to formulate the enteric-coated pellets including a drug loading layer, a sub-coating, and an outer enteric coating. Dissolution studies were performed on the prepared Lansoprazole capsules. Less than 5 percent of Lansoprazole was released in 60 minutes in an acidic dissolution medium (pH 1.2) and greater than 90 percent of active ingredient was released in the next 60 minutes in a buffer dissolution medium (pH 6.8). The Lansoprazole capsules were stable with no observable change in physico-chemical properties in accelerated and normal storage conditions for 6 and 18 months, respectively. The pharmacokinetic parameters Cmax, Tmax, AUC0-t, and AUC0-∞ were determined after administration of the D-Optimal design optimized capsules of LPZ to healthy beagle dogs and were statistically compared to Gastevin? capsules as a reference (KRKA, Slovenia) using the non-compartmental method with the aid of WinNonlin 5.2 software. The analysis of variance showed that the two formulations did not demonstrate bioequivalence using a 90% confidence interval range (80% - 120%) of Cmax, AUC0-t, and AUC0-∞. No significant difference in Tmax was found at the 0.95 significance level using the Wilcoxon signed-rank test. D-Optimal Experimental Design provided definitive direction for an optimal formulation of capsules containing enteric-coated pellets of lansoprazole loaded within the coating of pellets that provided similar bioequivalence to Gastevin.
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金supported by the Hong Kong Polytechnic University(1-WZ1Y,1-W34U,4-YWER).
文摘Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI chip to solve these AI tasks efficiently and powerfully.Rapid progress has been made in the field of advanced chips recently,such as the development of photonic computing,the advancement of the quantum processors,the boost of the biomimetic chips,and so on.Designs tactics of the advanced chips can be conducted with elaborated consideration of materials,algorithms,models,architectures,and so on.Though a few reviews present the development of the chips from their unique aspects,reviews in the view of the latest design for advanced and AI chips are few.Here,the newest development is systematically reviewed in the field of advanced chips.First,background and mechanisms are summarized,and subsequently most important considerations for co-design of the software and hardware are illustrated.Next,strategies are summed up to obtain advanced and AI chips with high excellent performance by taking the important information processing steps into consideration,after which the design thought for the advanced chips in the future is proposed.Finally,some perspectives are put forward.
基金National Natural Science Foundation of China (61071014)National Basic Research Program of China(2009CB72400201)
文摘This paper presents a novel experimental design to greatly improve the calibration accuracy of the acceleration-insensitive bias and the acceleration-sensitive bias of the dynamically tuned gyroscopes(DTGs).In order to reduce experimental cost,the D-optimal criteria with constraints are constructed.The turntable positions and the number of test points are chosen to build D-optimal experimental designs.The D-optimal experimental designs are tested by multi-position calibration experiment for tactical-grade DTGs.Test results show that,with the same cost,the fit uncertainty is reduced by about 50% by using the D-optimal 8-position experimental procedure,compared to using a defacto standard experimental procedure in ANSI/IEEE Std 813-1988.Furthermore,the new experimental procedure almost achieves optimal accuracy with only 12-position which is half the cost of the widely adopted 24-position experimental procedure for achieving optimal accuracy.
基金This work was supported by the National Natural Science Foundation of China(61502522)the Equipment Pre-Research Field Fund(JZX7Y20190253036101)+1 种基金the Equipment Pre-Research Ministry of Education Joint Fund(6141A02033703)the Hubei Provincial Natural Science Foundation(2019CFC897).
文摘To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time difference sensors of the UAV swarm to locate target radiation sources.Firstly,a TDOA model for the target is set up for the UAV swarm under the condition that the error variance varies with the received signal-to-noise ratio.The accuracy of the positioning error is analyzed by geometric dilution of precision(GDOP).The D-optimality criterion of the positioning model is theoretically derived.The target is positioned and settled,and the maximum value of the Fisher information matrix determinant is used as the optimization objective function to optimize the track of the UAV in real time.Simulation results show that the track optimization improves the positioning accuracy and stability of the UAV swarm to the target.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
文摘This study investigated the potential utility of poly (sodium N-undecanoyl-L-leucyl-valinate) (poly-L-SULV), poly (sodium N-undecanoyl-L-leucyl-alanate) (poly-L-SULA), and poly (sodium N-undecanoyl-glycinate) (poly-SUG) molecular micelles (MMs) as chelators for heavy metal (Cd, Cr, Cu, Co, and Ni) ion remediation of kaolinite clay using D-optimum experimental design. D-optimum experimental design was employed to simultaneously investigate the influence of design variables such as the buffer pH, chelator concentration, and centrifuge speed to evaluate the optimum conditions and to reduce the time and cost of metal ion remediation. The partition coefficients of the metal ion concentrations between the kaolinite clay and chelator equilibrium were also evaluated. In addition, the influence of metal ion concentrations on the remediation capability of the chelators was evaluated by conducting remediation studies at four different (10 ppm, 40 ppm, 60 ppm, and 80 ppm) metal ion concentrations. In general, the results of the remediation efficiency and partition coefficients obtained in this study are highly metal ion dependent and also dependent upon the chelator used for the remediation. Specifically, the remediation efficiency of the molecular micelles was found to be comparable to or better than the corresponding remediation efficiency obtained when SDS or EDTA was used for the remediation. However, at optimum conditions, poly-SULV and poly-L-SULA molecular micelle chelators demonstrated superior remediation efficiencies for Cr, with remediation efficiency of 99.9 ± 8.7% and 99.1 ± 0.7%, respectively.