The deep convolutional neural network U-net has been introduced into adaptive subtraction, which is a critical step in effectively suppressing seismic multiples. The U-net approach has higher precision than the tradit...The deep convolutional neural network U-net has been introduced into adaptive subtraction, which is a critical step in effectively suppressing seismic multiples. The U-net approach has higher precision than the traditional linear regression approach. However, the existing 2D U-net approach with 2D data windows can not deal with elaborate discrepancies between the actual and simulated multiples along the gather direction. It may lead to erroneous preservation of primaries or generate obvious vestigial multiples, especially in complex media. To further enhance the multiple suppression accuracy, we present an adaptive subtraction approach utilizing 3D U-net architecture, which can adaptively separate primaries and multiples utilizing 3D windows. The utilization of 3D windows allows for enhanced depiction of spatial continuity and anisotropy of seismic events along the gather direction in comparison to 2D windows. The 3D U-net approach with 3D windows can more effectively preserve the continuity of primaries and manage the complex disparities between the actual and simulated multiples. The proposed 3D U-net approach exhibits 1 dB improvement in the signal-to-noise ratio compared to the 2D U-net approach, as observed in the synthesis data section, and exhibits more outstanding performance in the preservation of primaries and removal of residual multiples in both synthesis and reality data sections. Moreover, to expedite network training in our proposed 3D U-net approach we employ the transfer learning (TL) strategy by utilizing the network parameters of 3D U-net estimated in the preceding data segment as the initial network parameters of 3D U-net for the subsequent data segment. In the reality data section, the 3D U-net approach incorporating TL reduces the computational expense by 70% compared to the one without TL.展开更多
Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data...Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it.展开更多
A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken b...A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies.展开更多
With the development of current electronic technology, numerous high-speed data acquisition systems provide a variety of potential benefits. This article describes a high-speed data acquisition system which consists o...With the development of current electronic technology, numerous high-speed data acquisition systems provide a variety of potential benefits. This article describes a high-speed data acquisition system which consists of ECL logic and TTL logic devices, samples and stores data with a 1 GHz clock. This system is accomplished easily and works stably. A performance test of this system has been undertaken and the results show that the effective number of bits (ENOB) is more than 6.5 bits.展开更多
Object classification in high-density 3D point clouds with applications in precision farming is a very challenging area due to high intra-class variances and high degrees of occlusions and overlaps due to self-similar...Object classification in high-density 3D point clouds with applications in precision farming is a very challenging area due to high intra-class variances and high degrees of occlusions and overlaps due to self-similarities and densely packed plant organs, especially in ripe growing stages. Due to these application specific challenges, this contribution gives an experimental evaluation of the performance of local shape descriptors (namely Point-Feature Histogram (PFH), Fast-Point-Feature Histogram (FPFH), Signature of Histograms of Orientations (SHOT), Rotational Projection Statistics (RoPS) and Spin Images) in the classification of 3D points into different types of plant organs. We achieve very good results on four representative scans of a leave, a grape bunch, a grape branch and a flower of between 94 and 99% accuracy in the case of supervised classification with an SVM and between 88 and 96% accuracy using a k-means clustering approach. Additionally, different distance measures and the influence of the number of cluster centres are examined.展开更多
A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh f...A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution(HR) deterministic background forecast with lower-resolution(LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation(GSI) 3D variational(3DVar)analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar.Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.展开更多
The current GIS can only deal with 2-D or 2.5-D information on the earth surface. A new 3-D data structure and data model need to be designed for the 3-D GIS. This paper analyzes diverse 3-D spatial phenomena from min...The current GIS can only deal with 2-D or 2.5-D information on the earth surface. A new 3-D data structure and data model need to be designed for the 3-D GIS. This paper analyzes diverse 3-D spatial phenomena from mine to geology and their complicated relations, and proposes several new kinds of spatial objects including cross-section, column body and digital surface model to represent some special spatial phenomena like tunnels and irregular surfaces of an ore body. An integrated data structure including vector, raster and object-oriented data models is used to represent various 3-D spatial objects and their relations. The integrated data structure and object-oriented data model can be used as bases to design and realize a 3-D geographic information system.展开更多
In the field of remote sensing imaging, multispectral imaging can obtain an image of the observed scene in several bands, while the light detection and ranging(LiDAR) can acquire the accurate 3D geometric information ...In the field of remote sensing imaging, multispectral imaging can obtain an image of the observed scene in several bands, while the light detection and ranging(LiDAR) can acquire the accurate 3D geometric information of the scene. With the development of remote sensing technology, how to effectively integrate the two imaging technologies in order to collect and process simultaneous spectral and 3D geometric information has been one of the frontier problems. Most of the present researches on simultaneous spectral and geometric data acquisition focus on the design of physical multispectral LiDAR system, which inevitably lead to an imaging system of heavy weight and high power consumption and thus inconvenient in practice. Different from the present researches, a UAV-based integrated multispectral-LiDAR system is introduced in this paper. Through simultaneous multi-sensor data collection and multispectral point cloud generation, a low-cost and UAV-based portable 3D geometric and spectral information acquisition system can be achieved.展开更多
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and wind...This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.展开更多
On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological...On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological objects are divided into four object classes: point, line, area and volume. The volume class is further divided into four subclasses: the composite volume, the complex volume, the simple volume and the component. Twelve kinds of topological relations and the related data structures are designed for the geological objects.展开更多
Creating and rendering intermediate geometric primitives is one of the approaches to visualize data sets in 3D space. Some algorithms have been developed to construct isosurface from uniformly distributed 3D data sets...Creating and rendering intermediate geometric primitives is one of the approaches to visualize data sets in 3D space. Some algorithms have been developed to construct isosurface from uniformly distributed 3D data sets. These algorithms assume that the function value varies linearly along edges of each cell. But to irregular 3D data sets, this assumption is inapplicable. Moreover, the depth sorting of cells is more complicated for irregular data sets, which is indispensable for generating isosurface images or semitransparent isosurface images, if Z-buffer method is not adopted.In this paper, isosurface models based on the assumption that the function value has nonlinear distribution within a tetrahedroll are proposed. The depth sorting algorithm and data structures are developed for the irregular data sets in which cells may be subdivided into tetrahedra. The implementation issues of this algorithm are discussed and experimental results are shown to illustrate potentials of this technique.展开更多
E lement- partition- based methods for visualization of 3D unstructured grid data are presented. First, partition schemes for common elements, including curvilinear tetrahedra, pentahedra, hexahedra, etc., are given, ...E lement- partition- based methods for visualization of 3D unstructured grid data are presented. First, partition schemes for common elements, including curvilinear tetrahedra, pentahedra, hexahedra, etc., are given, so that complex elements can be divided into several rectilinear tetrahedra, and the visualization processes can be simplified.Then, a slice method for cloud map and an iso-surface method based on the partition schemes are described.展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo...The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.展开更多
This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly...This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.展开更多
A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion o...A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.展开更多
To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
A new data fusion algorithm is presented. The new algorithm has two steps. First, three basic probability assignments dependent on different attribute parameters with Demspter fusion rule are processed. Using the fusi...A new data fusion algorithm is presented. The new algorithm has two steps. First, three basic probability assignments dependent on different attribute parameters with Demspter fusion rule are processed. Using the fusion results, one can calculate the evidence interval of the proposition that “the return is from target”. Then based on the magnitude of the center of the evidence interval, one can reject some false alarms, so as to cut down the number of clutters accepted by the filter gate. Second, the attribute parameter likelihood function(APLF, for short) and kinematic measurement likelihood function are used to form a joint likelihood function. A method is also proposed for calculating APLF. As for APLF, it is found and proved that there are differences between similar targets and dissimlar targets. By using the differences, one can distinguish adjacent targets more efficiently. In a word, the technique presented in this paper is an integrated adaptive data association fusion algorithm. The advantages of the algorithm are discussed and demonstrated via single and multiple targets tracking simulations. In simulation, the target maneuver, the presence of clutter and the varying of parameters are taken into consideration.展开更多
基金supported by National Natural Science Foundation of China(42364008,41804110)in part by Guizhou Provincial Basic Research Program(Natural Science)(ZK[2022]060)+1 种基金in part by China Postdoctoral Science Foundation(2022M723127)in part by Youth Innovation Team Project of Shandong Provincial Education Department(2022KJ141).
文摘The deep convolutional neural network U-net has been introduced into adaptive subtraction, which is a critical step in effectively suppressing seismic multiples. The U-net approach has higher precision than the traditional linear regression approach. However, the existing 2D U-net approach with 2D data windows can not deal with elaborate discrepancies between the actual and simulated multiples along the gather direction. It may lead to erroneous preservation of primaries or generate obvious vestigial multiples, especially in complex media. To further enhance the multiple suppression accuracy, we present an adaptive subtraction approach utilizing 3D U-net architecture, which can adaptively separate primaries and multiples utilizing 3D windows. The utilization of 3D windows allows for enhanced depiction of spatial continuity and anisotropy of seismic events along the gather direction in comparison to 2D windows. The 3D U-net approach with 3D windows can more effectively preserve the continuity of primaries and manage the complex disparities between the actual and simulated multiples. The proposed 3D U-net approach exhibits 1 dB improvement in the signal-to-noise ratio compared to the 2D U-net approach, as observed in the synthesis data section, and exhibits more outstanding performance in the preservation of primaries and removal of residual multiples in both synthesis and reality data sections. Moreover, to expedite network training in our proposed 3D U-net approach we employ the transfer learning (TL) strategy by utilizing the network parameters of 3D U-net estimated in the preceding data segment as the initial network parameters of 3D U-net for the subsequent data segment. In the reality data section, the 3D U-net approach incorporating TL reduces the computational expense by 70% compared to the one without TL.
文摘Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it.
基金supported by the National Natural Science Foundation of China(Nos.41171355and41002120)
文摘A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies.
文摘With the development of current electronic technology, numerous high-speed data acquisition systems provide a variety of potential benefits. This article describes a high-speed data acquisition system which consists of ECL logic and TTL logic devices, samples and stores data with a 1 GHz clock. This system is accomplished easily and works stably. A performance test of this system has been undertaken and the results show that the effective number of bits (ENOB) is more than 6.5 bits.
基金the project“Automated Evaluation and Comparison of Grapevine Genotypes by means of Grape Cluster Architecture”which is supported by the Deutsche Forschungsgemeinschaft(funding code:STE 806/2-1).
文摘Object classification in high-density 3D point clouds with applications in precision farming is a very challenging area due to high intra-class variances and high degrees of occlusions and overlaps due to self-similarities and densely packed plant organs, especially in ripe growing stages. Due to these application specific challenges, this contribution gives an experimental evaluation of the performance of local shape descriptors (namely Point-Feature Histogram (PFH), Fast-Point-Feature Histogram (FPFH), Signature of Histograms of Orientations (SHOT), Rotational Projection Statistics (RoPS) and Spin Images) in the classification of 3D points into different types of plant organs. We achieve very good results on four representative scans of a leave, a grape bunch, a grape branch and a flower of between 94 and 99% accuracy in the case of supervised classification with an SVM and between 88 and 96% accuracy using a k-means clustering approach. Additionally, different distance measures and the influence of the number of cluster centres are examined.
基金supported by the National Natural Science Foundation of China (Grant Nos.41730965,41775099 and 2017YFC1502104)PAPD (the Priority Academic Program Development of Jiangsu Higher Education Institutions)
文摘A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution(HR) deterministic background forecast with lower-resolution(LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation(GSI) 3D variational(3DVar)analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar.Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.
基金Project supported by the National Natural Science Foundation of China (No.49871066)
文摘The current GIS can only deal with 2-D or 2.5-D information on the earth surface. A new 3-D data structure and data model need to be designed for the 3-D GIS. This paper analyzes diverse 3-D spatial phenomena from mine to geology and their complicated relations, and proposes several new kinds of spatial objects including cross-section, column body and digital surface model to represent some special spatial phenomena like tunnels and irregular surfaces of an ore body. An integrated data structure including vector, raster and object-oriented data models is used to represent various 3-D spatial objects and their relations. The integrated data structure and object-oriented data model can be used as bases to design and realize a 3-D geographic information system.
基金supported by the National Natural Science Foundation of Key International Cooperation (Grant No. 61720106002)the Key Research and Development Project of Ministry of Science and Technology (Grant No.2017YFC1405100)the Heading Wild Goose Plan of Heilongjiang Province,China。
文摘In the field of remote sensing imaging, multispectral imaging can obtain an image of the observed scene in several bands, while the light detection and ranging(LiDAR) can acquire the accurate 3D geometric information of the scene. With the development of remote sensing technology, how to effectively integrate the two imaging technologies in order to collect and process simultaneous spectral and 3D geometric information has been one of the frontier problems. Most of the present researches on simultaneous spectral and geometric data acquisition focus on the design of physical multispectral LiDAR system, which inevitably lead to an imaging system of heavy weight and high power consumption and thus inconvenient in practice. Different from the present researches, a UAV-based integrated multispectral-LiDAR system is introduced in this paper. Through simultaneous multi-sensor data collection and multispectral point cloud generation, a low-cost and UAV-based portable 3D geometric and spectral information acquisition system can be achieved.
基金primarily supported by the National Fundamental Research 973 Program of China(Grant No.2013CB430101)the National Natural Science Foundation of China(Grant Nos.41275031,41322032 and 41475015)+1 种基金the Social Commonwealth Research Program(Grant Nos.GYHY201506004 and GYHY201006007)the Program for New Century Excellent Talents in Universities of China
文摘This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.
文摘On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological objects are divided into four object classes: point, line, area and volume. The volume class is further divided into four subclasses: the composite volume, the complex volume, the simple volume and the component. Twelve kinds of topological relations and the related data structures are designed for the geological objects.
文摘Creating and rendering intermediate geometric primitives is one of the approaches to visualize data sets in 3D space. Some algorithms have been developed to construct isosurface from uniformly distributed 3D data sets. These algorithms assume that the function value varies linearly along edges of each cell. But to irregular 3D data sets, this assumption is inapplicable. Moreover, the depth sorting of cells is more complicated for irregular data sets, which is indispensable for generating isosurface images or semitransparent isosurface images, if Z-buffer method is not adopted.In this paper, isosurface models based on the assumption that the function value has nonlinear distribution within a tetrahedroll are proposed. The depth sorting algorithm and data structures are developed for the irregular data sets in which cells may be subdivided into tetrahedra. The implementation issues of this algorithm are discussed and experimental results are shown to illustrate potentials of this technique.
文摘E lement- partition- based methods for visualization of 3D unstructured grid data are presented. First, partition schemes for common elements, including curvilinear tetrahedra, pentahedra, hexahedra, etc., are given, so that complex elements can be divided into several rectilinear tetrahedra, and the visualization processes can be simplified.Then, a slice method for cloud map and an iso-surface method based on the partition schemes are described.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.
基金supported by National Natural Science Foundation of China(No.52176122).
文摘The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.
基金This research is sponsored by by China Natural Science Foundation (40274041), China National Petroleum Corporation (CNPC)Innovation Fund (2002CXKF-3)
文摘This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.
基金supported by the National Natural Science Foundation of China (60572093)the Doctoral Program of Higher Education(20050004016)the Outstanding Doctoral Science Innovation Foundation of Beijing Jiaotong University (141095522)
文摘A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
文摘A new data fusion algorithm is presented. The new algorithm has two steps. First, three basic probability assignments dependent on different attribute parameters with Demspter fusion rule are processed. Using the fusion results, one can calculate the evidence interval of the proposition that “the return is from target”. Then based on the magnitude of the center of the evidence interval, one can reject some false alarms, so as to cut down the number of clutters accepted by the filter gate. Second, the attribute parameter likelihood function(APLF, for short) and kinematic measurement likelihood function are used to form a joint likelihood function. A method is also proposed for calculating APLF. As for APLF, it is found and proved that there are differences between similar targets and dissimlar targets. By using the differences, one can distinguish adjacent targets more efficiently. In a word, the technique presented in this paper is an integrated adaptive data association fusion algorithm. The advantages of the algorithm are discussed and demonstrated via single and multiple targets tracking simulations. In simulation, the target maneuver, the presence of clutter and the varying of parameters are taken into consideration.