期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Densification and thermal properties of cylindrical graphite-based fuel elements used in a molten salt reactor
1
作者 WANG Gan WANG Hao-ran +5 位作者 LU Lin-yuan LI Wan-lin CHEN Nan-nan HE Yun ZHONG Ya-juan LIN Jun 《新型炭材料(中英文)》 北大核心 2025年第6期1362-1376,I0059,共16页
Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of t... Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of the graphite used in the fuel element for these reactors being susceptible to molten salt infiltration,carbon black(CB)was added to increase the density of the graphite,and a fuel element(TRISO(tri-structural isotropic)fuel particles were randomly distributed in the modified graphite matrix)was prepared by cold isostatic pressing process.An out-of-pile performance study shows that the densification and pore structure of the modified graphite matrix were improved,as was the resistance to molten salt infiltration.The median pore size of the modified graphite was reduced from 673 to 433 nm and the threshold pressure for molten salt(FLiBe,66%(molar fraction)LiF and 34%BeF_(2))infiltration was increased from 0.88 to 1.37 MPa.The isotropic CB made the graphite matrix less anisotropic,while its thermal conductivity and compressive strength were reduced due to the difficult graphitization of CB.Fuel elements containing 20%(volume fraction)TRISO particles were prepared.Numerical simulations show that the power and temperature distribution of the fuel were in line with the design requirements.The modified graphite matrix had a higher density,smaller pores,a lower anisotropy and a greater resistance to FLiBe infiltration. 展开更多
关键词 Molten salt reactor cylindrical fuel element Graphite matrix Thermal properties Molten salt infiltration
在线阅读 下载PDF
“Volume-point”heat conduction constructal optimization based on entransy dissipation rate minimization with three-dimensional cylindrical element and rectangular and triangular elements on microscale and nanoscale 被引量:20
2
作者 FENG HuiJun CHEN LinGen SUN FengRui 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第3期779-794,共16页
Based on constructal theory,the constructs of three"volume-point"heat conduction models with three-dimensional cylindrical element and rectangular and triangular elements on microscale and nanoscale are opti... Based on constructal theory,the constructs of three"volume-point"heat conduction models with three-dimensional cylindrical element and rectangular and triangular elements on microscale and nanoscale are optimized by taking minimum entransy dissipation rate as optimization objective.The optimal constructs of the three"volume-point"heat conduction models with minimum dimensionless equivalent thermal resistance are obtained.The results show that the optimal constructs of the three-dimensional cylindrical assembly based on the minimizations of dimensionless equivalent thermal resistance and dimensionless maximum thermal resistance are different,which is obviously different from the comparison between those of the corresponding two-dimensional rectangular assembly based on the minimizations of these two objectives.The optimal constructs based on rectangular and triangular elements on microscale and nanoscale when the size effect takes effect are obviously different from those when the size effect does not take effect.Because the thermal current density in the high conductivity channel of the rectangular and triangular second order assemblies are not linear with the length,the optimal constructs of these assemblies based on the minimization of entransy dissipation rate are different from those based on the minimization of maximum temperature difference.The dimensionless equivalent thermal resistance defined based on entransy dissipation rate reflects the average heat transfer performance of the construct.The studies on"volume-point"heat conduction constructal problems at three-dimensional conditions and microscale and nanoscale by taking minimum entransy dissipation rate as optimization objective extend the application range of the entransy dissipation extremum principle. 展开更多
关键词 constructal theory entransy dissipation rate three-dimensional cylindrical element microscale and nanoscale vol-ume-point heat conduction generalized thermodynamic optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部