The steady flow behavior in terminal bronchus of human lung for cylindrical channel of porous medium has been studied. The governing equations have been solved analytically and numerically for cylindrical channel. Fin...The steady flow behavior in terminal bronchus of human lung for cylindrical channel of porous medium has been studied. The governing equations have been solved analytically and numerically for cylindrical channel. Finite difference method is incorporated to simulate the problem. The numerical results are compared with square duct channel for different parametric effect. It is observed that the flow rate is increased in cylindrical channel compared to square duct channel for the increasing value of pressure gradient, porosity and permeability. On the contrary, the flow rate is decreased in square duct channel compared to cylindrical channel for increasing value of viscosity. Flow rate in both channels is analyzed and compared for non-porous medium also. It is observed that flow rate is increased very high in cylindrical channel compared to square duct channel for both medium.展开更多
The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of ...The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition. the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration.展开更多
文摘The steady flow behavior in terminal bronchus of human lung for cylindrical channel of porous medium has been studied. The governing equations have been solved analytically and numerically for cylindrical channel. Finite difference method is incorporated to simulate the problem. The numerical results are compared with square duct channel for different parametric effect. It is observed that the flow rate is increased in cylindrical channel compared to square duct channel for the increasing value of pressure gradient, porosity and permeability. On the contrary, the flow rate is decreased in square duct channel compared to cylindrical channel for increasing value of viscosity. Flow rate in both channels is analyzed and compared for non-porous medium also. It is observed that flow rate is increased very high in cylindrical channel compared to square duct channel for both medium.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11475027,11765017,11764039,11305132,and 11274255)the Natural Science Foundation of Gansu Province,China(Grant No.17JR5RA076)the Scientific Research Project of Gansu Higher Education,China(Grant No.2016A-005)
文摘The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition. the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration.