期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
A micromechanical friction-damage fatigue model of rock materials under cyclic loadings using a fractional plastic flow rule
1
作者 Jin Zhang Ke Ren +3 位作者 Zhigang Tao Tao Ni Qi-Zhi Zhu Jianfu Shao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6248-6263,共16页
This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstruc... This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstructural degradation is decomposed into two parts:an instantaneous part arising from monotonic loading and a fatigue-related one induced by cyclic loading,relating to the initiation and propagation of microcracks.The inelastic deformation arises directly from frictional sliding along microcracks,inherently coupled with the damage effect.A fractional plastic flow rule is introduced using stress-fractional plasticity operations and covariant transformation approach,instead of classical plastic flow function.Additionally,the progression of fatigue damage is intricately tied to subcracks and can be calculated through application of a convolution law.The number of loading cycles serves as an integration variable,establishing a connection between inelastic deformation and the evolution of fatigue damage.In order to verify the accuracy of the proposed model,comparison between analytical solutions and experimental data are carried out on three different rocks subjected to conventional triaxial compression and cyclic loading tests.The evolution of damage variables is also investigated along with the cumulative deformation and fatigue lifetime.The improvement of the fractional model is finally discussed by comparing with an existing associated fatigue model in literature. 展开更多
关键词 Fractional model MICROMECHANICS Fatigue damage Rock material cyclic loadings
在线阅读 下载PDF
Cyclic loading of marble:Correlating the attenuation of the electric and acoustic activities and highlighting criticality indices in terms of natural time
2
作者 Dimos Triantis Ilias Stavrakas +1 位作者 Ermioni D.Pasiou Stavros K.Kourkoulis 《International Journal of Mining Science and Technology》 2025年第2期159-174,共16页
The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-fail... The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-failure indiceso"warning about entrance into a critical stage,that of impending fracture,is explored.The acoustic activity is quantified in terms of the normalized number of acoustic hits,their average rate of production and their cumulative energy,and,the cumulative counts and their average rate of change.The electric activity is studied in terms of the pressure stimulated currents and the electric charge released.The analysis revealed that the acoustic and electric activities are linearly correlated to each other,suggesting that they are different manifestations of the same damage mechanisms.In addition,Kaiser's effect,governing the acoustic activity,is found to govern,also,the electric activity.Moreover,it is concluded that entrance into the critical stage is safely predicted by means of a simple criterion,based on the evolution of the average rate of change of the normalized cumulative counts in the natural time domain.These predictions are almost identical with those of the criterion based on the "varianceo" and the "entropies" of the time series of acoustic events in this domain. 展开更多
关键词 Marble cyclic loading Acoustic emissions Kaiser's effect Pressure stimulated currents Criticality indices Natural time
在线阅读 下载PDF
Effect of loading rate on the mechanical response and energy evolution of skarn rock subjected to constant-amplitude cyclic loading
3
作者 WU Yun-feng WANG Yu +5 位作者 LI Chang-hong ZHOU Bao-kun LI Peng CAI Mei-feng SUN Chang-kun TIAN Zi-cheng 《Journal of Central South University》 2025年第3期1117-1140,共24页
This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain... This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies. 展开更多
关键词 cyclic loading loading rate constant amplitude deformation characteristics energy dissipation
在线阅读 下载PDF
Damage evolution in sandstone under uniaxial cyclic loading and varying water contents:Theoretical and experimental investigation
4
作者 ZHANG Sheng BAI Wei +3 位作者 XU Ding-ping ZHENG Hong JIANG Quan LI Zhi-wei 《Journal of Central South University》 2025年第8期3095-3110,共16页
During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is ampl... During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is amplified.However,research on the mechanical response mechanisms of surrounding rock mass under such conditions remains inadequate.This study utilized acoustic emission(AE)and resistivity testing to monitor rock fracture changes,revealing the rock’s damage state and characterizing the damage evolution process during uniaxial cyclic loading and unloading.First,a damage variable equation was established based on AE and resistivity parameters,leading to the derivation of a corresponding damage constitutive equation.Uniaxial cyclic loading and unloading tests were then conducted on sandstone samples with varying water contents,continuously monitoring AE signals and resistivity,along with computed tomography scans before and after failure.The predictions from the damage constitutive equation were compared with experimental results.This comparison shows that the proposed damage variable equation effectively characterizes the damage evolution of sandstone during loading and unloading,and that the constitutive equation closely fits the experimental data.This study provides a theoretical basis for monitoring and assessing the responses of surrounding rock mass during underground excavation. 展开更多
关键词 SANDSTONE acoustic emission rock resistivity uniaxial cyclic loading and unloading rock cracks damage constitutive equation
在线阅读 下载PDF
Damage evolution and failure behavior of coal-rock combination subjected to different cyclic loading paths and loading rates: Insights from energy-driven effects
5
作者 WANG Kai ZUO Xiao-huan +4 位作者 DU Feng SUN Jia-zhi JU Yang SHU Long-yong CAI Yong-bo 《Journal of Central South University》 2025年第9期3447-3469,共23页
In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior... In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior,and energy evolution characteristics of these structures under different cyclic stress disturbances.Three loading and unloading rates(LURs)are tested to examine the damage behaviors and energy-driven characteristics of the composites.The findings reveal that the energy-driven behavior,mechanical properties,and macro-micro degradation characteristics of the composites are significantly influenced by the loading rate.Under the gradual cyclic loading and unloading(CLU)path with a constant lower limit(path I)and the CLU path with variable upper and lower boundaries(path II),an increase in LURs from 0.05 to 0.15 mm/min reduces the average loading time by 32.39%and 48.60%,respectively.Consequently,the total number of cracks in the samples increases by 1.66-fold for path I and 1.41-fold for path II.As LURs further increase,the energy storage limit of samples expands,leading to a higher proportion of transmatrix and shear cracks.Under both cyclic loading conditions,a broader cyclic stress range promotes energy dissipation and the formation of internal fractures.Notably,at higher loading rates,cracks tend to propagate along primary weak surfaces,leading to an increased incidence of intermatrix fractures.This behavior indicates a microscopic feature of the failure mechanisms in composite structures.These results provide a theoretical basis for elucidating the damage and failure characteristics of coal-rock composite structures under cyclic stress disturbances. 展开更多
关键词 coal-rock composite samples cyclic loading loading and unloading rates RA-AF correlation macro-micro damage features failure behavior
在线阅读 下载PDF
Dynamic properties and shakedown behavior of red clay under intermittent cyclic loading
6
作者 LIU Mingxing LU Weihong +3 位作者 XU Yijian DENG Ye ZHONG Yuhuang LIU Enlong 《Journal of Mountain Science》 2025年第10期3835-3849,共15页
Red clay,widely used as a subgrade material in southern China,requires a reliable evaluation of its dynamic behavior to ensure infrastructure safety.Long-term cyclic triaxial tests were conducted on red clay from typi... Red clay,widely used as a subgrade material in southern China,requires a reliable evaluation of its dynamic behavior to ensure infrastructure safety.Long-term cyclic triaxial tests were conducted on red clay from typical,complex subway subgrades to investigate its dynamic properties and shakedown behavior under intermittent cyclic loading.Results show that intermittent cyclic loading,especially with multiple amplitudes,causes greater axial plastic strain and lower post-cyclic strength than continuous loading.These effects diminish with increasing confining pressure.Notably,axial strain partially recovers during loading intervals,with recovery ratios depending on the number and sequence of pauses.Based on the rules of cumulative plastic strain rates and cumulative plastic strain increments,shakedown behavior for red clay under intermittent cyclic loading is divided into three categories:plastic shakedown,critical shakedown,and plastic creep.A quantitative shakedown limit criterion is proposed using the Boltzmann function.Shakedown behavior significantly influences the post-cyclic strengths,and the influence diminishes as confining pressure increases.Samples exhibiting plastic creep and plastic shakedown behavior have the lowest and highest strengths,and those with critical shakedown behaviors have medium strengths.Cyclic loading with relatively low-stress amplitude causes a hardening effect,while cyclic loading intermittence or cyclic loading with relatively high-stress amplitude causes a degradation effect,and both effects are mitigated by higher confining pressures. 展开更多
关键词 Red clay Intermittent cyclic loading Dynamic properties Shakedown behavior Post-cyclic strength
原文传递
Mechanical responses of sandstone exposed to triaxial differential cyclic loading with distinct unloading rates of confining stress:A lab scale investigation
7
作者 Z.Y.Song W.H.Zhang +3 位作者 Z.Yu Y.Zhao M.Zhang W.G.Dang 《International Journal of Coal Science & Technology》 2025年第4期133-159,共27页
This article investigates the mechanical responses and acoustic emission(AE)characteristics of sandstone under the triaxial differential cyclic loading(DCL)at different unloading rates of confining stress.The test res... This article investigates the mechanical responses and acoustic emission(AE)characteristics of sandstone under the triaxial differential cyclic loading(DCL)at different unloading rates of confining stress.The test results indicate that strength of rock specimens under different stress paths of triaxial unloading confining stress-differential cyclic loading(TUCS-DCL)can be fitted by the Mohr–Coulomb,Hoek–Brown,and Bieniawski criteria.The confining stress unloading rate can dominate the radial strain rate,while the axial DCL pattern has an unpronounced effect.The confining stress unloading rate affects the energy evolution in radial and axial directions of specimens,with the ratio of radially released energy to axially consumed energy fluctuating more significantly during the fast unloading of confining stress,the valley value of the ratio can serve as a precursor for failure.The confining stress unloading rate has no significant effect on stress–strain phase shift,while axial rapid-loading-slow-unloading can correspond to a larger magnitude of phase shift.AE signals begin to significantly increase after the confining stress is unloaded to zero,and a notable Kaiser effect is observed during cyclic loading preceding the failure. 展开更多
关键词 Differential cyclic loading(DCL) Unloading rate Energy dissipation Phase shift Acoustic emission
在线阅读 下载PDF
Experimental study on failure precursory characteristics and moisture content effect of pre-cracked rocks under graded cyclic loading and unloading
8
作者 Wei Zhang Dongxiao Zhang +1 位作者 Weiyao Guo Baoliang Zhang 《International Journal of Mining Science and Technology》 2025年第2期249-264,共16页
It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and ... It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces. 展开更多
关键词 Damage mechanisms Pre-cracked rocks Crack propagation Water-rock interaction Graded cyclic loading and unloading
在线阅读 下载PDF
Fatigue properties and constitutive model of Jintan salt rock subjected to complex cyclic loading
9
作者 Qingchuan He Jianfeng Liu +5 位作者 Fei Wu Cunbao Li Jie Chen Renbo Gao Chunfeng Ye Shijie Zhu 《International Journal of Mining Science and Technology》 2025年第1期121-133,共13页
Salt cavern energy storage technology contributes to energy reserves and renewable energy scale-up.This study focuses on salt cavern gas storage in Jintan to assess the long-term stability of its surrounding rock unde... Salt cavern energy storage technology contributes to energy reserves and renewable energy scale-up.This study focuses on salt cavern gas storage in Jintan to assess the long-term stability of its surrounding rock under frequent operation.The fatigue test results indicate that stress holding significantly reduces fatigue life,with the magnitude of stress level outweighing the duration of holding time in determining peak strain.Employing a machine learning approach,the impact of various factors on fatigue life and peak strain was quantified,revealing that higher stress limits and stress holding adversely impact the fatigue index,whereas lower stress limits and rate exhibit a positive effect.A novel fatigue-creep composite damage constitutive model is constructed,which is able to consider stress magnitude,rate,and stress holding.The model,validated through multi-path tests,accurately captures the elasto-viscous behavior of salt rock during loading,unloading,and stress holding.Sensitivity analysis further reveals the time-and stress-dependent behavior of model parameters,clarifying that strain changes stem not only from stress variations but are also influenced by alterations in elasto-viscous parameters.This study provides a new method for the mechanical assessment of salt cavern gas storage surrounding rocks. 展开更多
关键词 Salt cavern gas storage cyclic loading Fatigue characteristics Constitutive model
在线阅读 下载PDF
Mechanical Behavior of Concrete Lintel-column Joint in Chinese Traditional Style Buildings Under Dynamic Cyclic Loading
10
作者 LIU Haipeng DU Luyi +1 位作者 LI Xiang DONG Jinshuang 《International Journal of Plant Engineering and Management》 2025年第3期129-145,共17页
In order to research the concrete archaized buildings with lintel-column joint,2 specimens were tested under dynamic experiment.The failure characteristics,skeleton curves,mechanical behavior such as the load-displace... In order to research the concrete archaized buildings with lintel-column joint,2 specimens were tested under dynamic experiment.The failure characteristics,skeleton curves,mechanical behavior such as the load-displacement hysteretic loops,load carrying capacity,degradation of strength and stiffness,ductility and energy dissipation of the joints were analyzed.The results indicate that comparies with the lintel-column joints,the loading capacity and energy dissipation of the concrete archaized buildings with dual lintel-column joints are higher,and the hysteretic loops is in plump-shape.However,the displacement ductility coefficient is less than that of lintel-column joints.Both of them of the regularity of rigidity degeneration are basically the same.Generally,the joints have the good energy dissipation capacity.And the concrete archaized buildings with lintel-column joints exhibit excellent seismic behavior. 展开更多
关键词 chinese traditional style buildings dual-lintel-column joint dynamic cyclic loading mechanical behavior
在线阅读 下载PDF
Development of rock creep test system considering dynamic-static and ultralow-frequency cyclic loading
11
作者 Yinping Li Zhikai Dong +7 位作者 Xilin Shi Haoran Li Cuiyao Zhuo Yuanxi Liu Xiangsheng Chen Si Huang Weigang Zhao Yaodong Qi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期6900-6914,共15页
This paper presents an ultralow-frequency cyclic loading creep test system for rock salt.The system comprises five subsystems:a cyclic load generation system,a triaxial pressure chamber,a pressure and deformation moni... This paper presents an ultralow-frequency cyclic loading creep test system for rock salt.The system comprises five subsystems:a cyclic load generation system,a triaxial pressure chamber,a pressure and deformation monitoring system,a signal acquisition and load control integrated system,and an automatic oil replenishment and discharge system.This test system overcomes the limitations of traditional electrohydraulic servo creep testing machines and gravity loading creep testing machines when conducting low-frequency cyclic load creep tests.This allows for long-term(1-2 years)creep tests under extremely-low-frequency cyclic loading conditions,which simulate the actual operating conditions of salt cavern gas storage.The cyclic load generation system converted constant-weight loads into a continuously variable hydraulic oil pressure and amplified the oil pressure using a pressure intensifier,which provided a stable load source for the test system.Using this test system,creep tests were performed under low-frequency cyclic loading with periods of 1 d and 7 d.The results showed that the test system performed well,as evidenced by the validation of the loading capacity,loading stability,and temperature control stability.Comparing the creep deformation of rock salt samples with the cyclic periods of 1 d and 7 d,it was observed that,within this cyclic period range,the creep deformation of the sample increased with higher loading frequencies,provided that the cyclic loading waveform and stress remained constant. 展开更多
关键词 Creep test system cyclic load Ultralow-frequency Rock salt Rock mechanics
在线阅读 下载PDF
Damage behavior of red sandstone subjected to multi-stage constantamplitude cyclic loading
12
作者 Shuo Gao Fei Wu +2 位作者 Renbo Gao Cunbao Li Jie Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6548-6570,共23页
Cyclic changes in the internal pressure of compressed air energy storage reservoirs in abandoned coal mines result in complex alternating loads on the rocks surrounding the energy storage reservoirs.These complex alte... Cyclic changes in the internal pressure of compressed air energy storage reservoirs in abandoned coal mines result in complex alternating loads on the rocks surrounding the energy storage reservoirs.These complex alternating loads can be regarded as multi-stage constant-amplitude cyclic loads following simplification.In this paper,the mechanical responses and acoustic emission(AE)characteristics of red sandstone with five bedding dip angles(0°,30°,45°,60°,and 90°)under such loads are investigated,and the damage evolution processes of the five specimens are revealed from both quantitative and microscopic perspectives.The results show that the fatigue deformation characteristics of the specimens are affected by the bedding dip angle.Under cyclic loads,the axially irreversible plastic deformations of the rocks increase,their elastic stiffness increases,their crack volumetric strain increases and then decreases,and their AE cumulative count/energy curves exhibit a ladder shape.A damage evolution model based on the crack volumetric strain is proposed,and the damage evolution process is divided into two stages:a rapid increase stage and a tendency toward stabilization stage.Through cluster analysis,the AE events are used to classify the damage into three categories:small-sized localized damage,large-sized tensile damage,and large-sized shear damage.Finally,the MohreCoulomb criterion is applied to analyze the relationship between the failure modes of the red sandstone specimens and the dip angle of the bedding.The results of this study will help to predict the stability and safety of compressed air energy storage reservoirs in abandoned coal mines. 展开更多
关键词 cyclic loads Bedding dip angle Red sandstone Damage evolution
在线阅读 下载PDF
Dynamic performance of angle-steel concrete columns under low cyclic loading-I:Experimental study 被引量:21
13
作者 郑文忠 计 静 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第1期67-75,共9页
This paper describes low cyclic loading testing of nine angle-steel concrete column (ASCC) specimens. In the tests, the influence of the shear-span ratio, axial compression ratio and shear steel plate ratio on the h... This paper describes low cyclic loading testing of nine angle-steel concrete column (ASCC) specimens. In the tests, the influence of the shear-span ratio, axial compression ratio and shear steel plate ratio on the hysteretic behavior, energy dissipation, strength degradation, stiffness degradation, skeleton curve and ductility of the ASCCs is studied. Based on the test results, some conclusions are presented. The P-A and sectional M -φ hysteretic models for the ASCCs are presented in a companion paper (Zheng and Ji, 2008). 展开更多
关键词 cyclic loading test DUCTILITY hysteretic model angle-steel concrete column shear-span ratio steel platestirrup steel jacketing seismic retrofitting
在线阅读 下载PDF
Dynamic performance of angle-steel concrete columns under low cyclic loading-II:parametric study 被引量:16
14
作者 Zheng Wenzhong Ji Jing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第2期137-146,共10页
Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are pre... Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice. 展开更多
关键词 low cyclic loading angle-steel concrete column shear-span ratio steel plate stirrup hysteretic model
在线阅读 下载PDF
Strength degradation of sandstone and granodiorite under uniaxial cyclic loading 被引量:20
15
作者 Rashid Geranmayeh Vaneghi Behnam Ferdosi +1 位作者 Achola D.Okoth Barnabas Kuek 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期117-126,共10页
Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks u... Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks under cyclic loading fail at much lower strength as compared to those subjected to the monotonic loading conditions. A few selected cored granodiorite and sandstone specimens have been subjected to uniaxial cyclic compression tests to obtain the unconfined fatigue strength and life. This study seeks to examine the effects of cyclic loading conditions, loading amplitude and applied stress level on the fatigue life of sandstone, as a soft rock, and granodiorite, as a hard rock, under uniaxial compression test. One aim of this study is to determine which of the loading conditions has a stronger effect on rock fatigue response. The fatigue response of hard rocks and soft rocks is also compared. It is shown that the loading amplitude is the most important factor affecting the cyclic response of the tested rocks. The more the loading amplitude, the shorter the fatigue life, and the greater the strength degradation. The granodiorite specimens showed more strength degradation compared to the sandstone specimens when subjected to cyclic loading. It is shown that failure modes of specimens under cyclic loadings are different from those under static loadings. More local cracks were observed under cyclic loadings especially for granodiorite rock specimens. 展开更多
关键词 Rock fatigue cyclic loading Strength degradation Fatigue life
在线阅读 下载PDF
Mechanical response and microscopic damage mechanism of pre-flawed sandstone subjected to monotonic and multilevel cyclic loading:A laboratory-scale investigation 被引量:9
16
作者 Kesheng Li Shengqi Yang +3 位作者 Chuanxiao Liu Yun Chen Guanglei Zhang Qing Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1487-1510,共24页
This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how c... This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate. 展开更多
关键词 SANDSTONE Pre-existing coplanar flaws Multilevel constant-amplitude cyclic loading Mechanical behavior Microscopic damage mechanism
在线阅读 下载PDF
Seismic performance of interior precast concrete beam-column connections with T-section steel inserts under cyclic loading 被引量:16
17
作者 Rattapon Ketiyot Chayanon Hansapinyo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期355-369,共15页
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/... An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region. 展开更多
关键词 precast concrete beam-column connection cyclic loading
在线阅读 下载PDF
INTERFACIAL DEBONDING OF COATED-FIBER-REINFORCED COMPOSITES UNDER TENSION-TENSION CYCLIC LOADING 被引量:7
18
作者 石志飞 周利民 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第4期347-356,共10页
A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading i... A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading is studied.The effects of strength and thickness of the coating materials on the debond stress,debond rate as well as debond length are simulated. 展开更多
关键词 interfacial debonding cyclic loading COATING fiber-reinforced composite
在线阅读 下载PDF
Pore water pressure increment model for saturated Nanjing fine sand subject to cyclic loading 被引量:7
19
作者 Wang Binghui Chen Guoxing Jin Dandan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第4期569-576,共8页
Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of... Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance. 展开更多
关键词 cyclic loading Nanjing fine sand EPWP model EPWP increment ratio effective dynamic shear stress ratio logarithmic decrement of effective stress
在线阅读 下载PDF
Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-MSu 被引量:6
20
作者 Hao-yuan Liu Amir M.Kaynia 《Water Science and Engineering》 EI CAS CSCD 2022年第1期69-77,共9页
Monopile response under undrained conditions in sand is gaining increasing interests owing to the recent development of offshore wind farms in seismic regions.Pore pressure evolution in liquefiable soil can significan... Monopile response under undrained conditions in sand is gaining increasing interests owing to the recent development of offshore wind farms in seismic regions.Pore pressure evolution in liquefiable soil can significantly reduce the strength and stiffness of the soil which in turn affects the structural dynamic response.Several numerical models have been developed in the last two decades to enhance understanding of the mechanism of monopile-soil interaction with the existence of pore water pressure.In this study,the effects of geometry and static vertical load on monopile lateral response were studied using three-dimensional finite element methods that consider the existence of lateral cyclic load-induced pore water pressure.To achieve reliable simulation results of pore pressure development and pile displacement accumulation during cyclic loading,the simple anisotropic sand model with memory surface for undrained cyclic behavior of sand was adopted.For piles with the same diameter,a accumulated pile head displacement during lateral cyclic loading decreased linearly with increasing pile embedded length but increased with increasing eccentricity.Static vertical load had minor effects on pile cyclic lateral response.The distributions of mean effective stress and pore water pressure in the soil domain were presented.The pile reaction curve(cyclic soil reaction against pile defection)of the monopile was extracted.The numerical results aim to provide reference for optimized engineering design procedures. 展开更多
关键词 Offshore monopile Pore pressure cyclic loading Soil-structure interaction SAND
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部