期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进CycleGAN的小样本玉米病害图像扩充方法
1
作者 李艳玲 张博翔 +3 位作者 李飞涛 Bacao Fernando 司海平 陈丽娜 《华中农业大学学报》 北大核心 2025年第5期198-207,共10页
针对玉米病害图像识别任务存在数据集获取困难、样本不足及不同类别病害样本不均衡等问题,设计一种基于改进CycleGAN(cycle-consistent adversarial networks)的图像数据增强方法。首先,使用较小感受野的卷积核优化CycleGAN网络结构,生... 针对玉米病害图像识别任务存在数据集获取困难、样本不足及不同类别病害样本不均衡等问题,设计一种基于改进CycleGAN(cycle-consistent adversarial networks)的图像数据增强方法。首先,使用较小感受野的卷积核优化CycleGAN网络结构,生成高质量样本图像,减少过拟合现象发生;其次,将SE(squeeze-excitation)注意力机制嵌入到生成器的残差模块中,增强CycleGAN对病害特征的提取能力,使网络更准确地捕捉小目标病害或域间差异不明显的特征。结果显示,改进后的CycleGAN相较于原始CycleGAN、DCGAN、DCGAN+和WGAN算法,生成病害图像的FID分数分别降低了43.33、32.67、24.24和19.72,GAN-train与GANtest相较于原始CycleGAN提升了3.13、4.25百分点;采用改进的CycleGAN图像扩充方法构建玉米病害数据集,基于该数据集的玉米叶片病害识别模型准确率在3种网络架构上均得到有效提升:AlexNet提升3.90百分点,VGGNet提升4.41百分点,ResNet提升3.44百分点,在ResNet网络架构上与传统数据增强算法相比病害识别率提升5.79百分点。结果表明,改进的CycleGAN网络有效解决了玉米病害图像数据集匮乏的问题。 展开更多
关键词 数据增强 玉米叶片病害 残差模块 循环一致性生成对抗网络
在线阅读 下载PDF
改进CycleGAN的半监督建筑物提取算法
2
作者 卢鹏 仲闯 《计算机工程》 北大核心 2025年第3期241-251,共11页
建筑物提取需要大量的标注数据进行训练,收集和标注数据需要耗费大量时间。为了在小样本遥感图像数据集上基于半监督学习实现建筑物提取的目的,构建4组建筑物提取数据集,提出了一种基于循环一致性生成对抗网络(CycleGAN)的建筑物提取算... 建筑物提取需要大量的标注数据进行训练,收集和标注数据需要耗费大量时间。为了在小样本遥感图像数据集上基于半监督学习实现建筑物提取的目的,构建4组建筑物提取数据集,提出了一种基于循环一致性生成对抗网络(CycleGAN)的建筑物提取算法。首先,在生成器中引入全局注意力机制(GAM)以增强对建筑物和图像背景细节特征的区分;其次,在判别器中加入谱归一化层以增强训练稳定性,解决了训练过程中梯度消失问题;最后,改进对抗损失和循环一致性损失以提高生成图像的质量,避免生成图像的过度平滑化,并引入Identity损失以限制生成器不会自主修改输入图像的颜色,保证输入图像与输出图像颜色组成的一致性。实验结果表明,在第1组小样本数据集上,与UNIT、MUNIT、U-GAT-IT、SPatchGAN、QS-Attn模型进行半监督实验对比,结构相似性(SSIM)值和准确率分别至少提高了3、8.1百分点,在扩充数据规模的数据集上,使用改进后的算法进行全监督和半监督实验对比,验证了改进后的算法在小样本遥感图像数据集上实现建筑物半监督提取的有效性。 展开更多
关键词 建筑物提取 循环一致性生成对抗网络 谱归一化 全局注意力机制 半监督
在线阅读 下载PDF
基于CycleGAN网络对OCT图像实现去模糊去噪
3
作者 范兴鸿 陈湘萍 +2 位作者 谷浩 赵粟 蒋浩 《软件工程》 2025年第9期73-78,共6页
光学相干断层扫描(Optical Coherence Tomography,OCT)图像在采集过程中常遭受噪声影响,导致成像结构模糊和失真。为有效消除OCT图像中的噪声并提高图像清晰度,基于CycleGAN网络架构,通过加入SE模块、DSC模块和优化损失函数,并采用无监... 光学相干断层扫描(Optical Coherence Tomography,OCT)图像在采集过程中常遭受噪声影响,导致成像结构模糊和失真。为有效消除OCT图像中的噪声并提高图像清晰度,基于CycleGAN网络架构,通过加入SE模块、DSC模块和优化损失函数,并采用无监督学习方式处理OCT图像。实验结果表明,这些方法在去噪和去模糊方面优于传统方法和其他无监督深度学习技术,尤其在图像清晰度方面,比传统降噪方法的PSNR值高了10%以上。本研究突显了深度学习技术在医学图像处理中的潜力与实用价值,为未来的临床应用提供了新的指导方法。 展开更多
关键词 OCT图像去模糊 OCT图像去噪 无监督学习 cyclegan网络
在线阅读 下载PDF
基于改进CycleGAN的花粉灰度图像着色方法
4
作者 石宝 周昊 武文红 《北京工业大学学报》 北大核心 2025年第9期1063-1070,共8页
针对生成式对抗网络对灰度图像着色时出现的颜色溢出和着色图像细节不足等问题,提出一种基于循环一致生成对抗网络(cycle-consistent generative adversarial networks,Cycle GAN)的花粉灰度图像着色方法。该方法从无监督学习的角度出发... 针对生成式对抗网络对灰度图像着色时出现的颜色溢出和着色图像细节不足等问题,提出一种基于循环一致生成对抗网络(cycle-consistent generative adversarial networks,Cycle GAN)的花粉灰度图像着色方法。该方法从无监督学习的角度出发,采用Cycle GAN对图像进行着色。为解决花粉灰度图像着色中的着色不连续和着色图像不细腻等问题,引入非局部模块,以便有效获取图像的全局信息表征。此外,还引入自注意力机制,以此帮助网络更准确地判断像素点之间的空间位置关系,进而增强着色模型的学习能力。实验结果表明,该方法获得的峰值信噪比、结构相似性指数和平均主观意见分分别为28.673、0.956、4.567,在测试集上生成的彩色图像质量更好。该方法不仅有效地解决了颜色溢出和着色不连续等问题,还丰富了图像的细节信息。 展开更多
关键词 花粉 灰度图像着色 深度学习 循环一致生成对抗网络 非局部模块 自注意力机制
在线阅读 下载PDF
基于CycleGAN的地震数据去噪方法 被引量:1
5
作者 傅鹏 宋晓霞 《电子科技》 2025年第4期25-30,65,共7页
针对实际地震数据被大量随机噪声干扰而难以获得配对的无噪数据问题,文中提出一种基于CycleGAN(Cycle Generative Adversarial Network)的地震数据随机噪声压制方法来获得高质量的地震数据。将残差网络引入循环生成对抗网络的生成网络中... 针对实际地震数据被大量随机噪声干扰而难以获得配对的无噪数据问题,文中提出一种基于CycleGAN(Cycle Generative Adversarial Network)的地震数据随机噪声压制方法来获得高质量的地震数据。将残差网络引入循环生成对抗网络的生成网络中,通过跳跃连接形式加快网络的训练速度,并扩充残差块中的卷积层,增强残差块结构来更好地获取样本特征。对合成数据和实际数据分别进行实验,利用SNR(Signal to Noise Ratio)和MSE(Mean Square Error)等评价指标验证其去噪效果,并将结果与CNN(Convolutional Neural Network)去噪方法进行对比。结果表明,相较于CNN,所提方法的SNR、MSE和PSNR(Peak Signal-to-Noise Ratio)在合成数据实验中分别提升了0.59 dB、23.72、2.81 dB,在实际数据实验中分别提升了4.63 dB、1.13、0.77 dB,训练时间缩短约58%。 展开更多
关键词 地震数据 随机噪声 去噪 生成对抗网络 cyclegan 图像处理 卷积神经网络 深度学习
在线阅读 下载PDF
基于改进CycleGAN的水上图像去雾算法
6
作者 黄超 胡勤友 黄子硕 《上海海事大学学报》 北大核心 2025年第1期17-22,111,共7页
雾会使水上拍摄的图像质量下降,导致基于视觉的船舶智能感知系统和水域监控系统受到影响;收集水面上的有雾图像和无雾图像难度较大。针对上述问题,提出一种基于改进循环生成对抗网络(cycle-consistent generative adversarial network,C... 雾会使水上拍摄的图像质量下降,导致基于视觉的船舶智能感知系统和水域监控系统受到影响;收集水面上的有雾图像和无雾图像难度较大。针对上述问题,提出一种基于改进循环生成对抗网络(cycle-consistent generative adversarial network,CycleGAN)的水上图像去雾算法。将CycleGAN的生成器模块替换为改进后的门控上下文聚合网络(gated context aggregation network,GCANet),同时使用感知损失从高级语义角度约束图像的生成质量。实验表明:在合成数据集上,所提算法的峰值信噪比和结构相似度分别为25.26和0.9047,相较于对比算法分别提高了13.6%~41.2%和10.9%~17.9%,并在水上真实数据集上展示出了更优的清晰度和色彩真实性。 展开更多
关键词 图像去雾 循环生成对抗网络(cyclegan) 门控上下文聚合网络(GCANet) 感知损失
在线阅读 下载PDF
基于改进CycleGAN进行无监督织物瑕疵生成
7
作者 张进峰 张捷皓 向忠 《软件工程》 2025年第8期32-37,共6页
织物瑕疵种类繁多且获取困难,导致织物瑕疵检测具有一定的挑战性。为解决此难题,提出了一种基于改进CycleGAN模型的织物瑕疵图像生成方法,旨在丰富织物数据集。引入U-Net并对其特征提取模块进行优化,设计一种并行扩张双向注意力结构,以... 织物瑕疵种类繁多且获取困难,导致织物瑕疵检测具有一定的挑战性。为解决此难题,提出了一种基于改进CycleGAN模型的织物瑕疵图像生成方法,旨在丰富织物数据集。引入U-Net并对其特征提取模块进行优化,设计一种并行扩张双向注意力结构,以有效提取图像纹理和边缘特征信息。在快速连接中,加入混合注意力结构以有效过滤冗余信息,并设计深度残差结构增强模型表达能力和网络深度。实验结果表明,该模型在FID、PSNR及LPIPS等关键指标上均表现出显著优势,充分验证了其优越性。 展开更多
关键词 cyclegan 织物瑕疵生成 生成对抗网络 无监督学习
在线阅读 下载PDF
基于CycleGAN和注意力机制的人脸素描图像转换
8
作者 林睿姿 姚达 +3 位作者 戴欣 沈国誉 王嘉慧 万伟国 《计算机与现代化》 2025年第9期61-66,72,共7页
近年来,人脸素描-照片合成技术因其在执法、刑事及娱乐等领域的需求,成为研究热点。CycleGAN作为一种无需配对图像监督的深度学习模型,擅长图像跨域转换,为素描与照片间的高效转换提供了有力工具。鉴于收集大量成对的人脸图像和素描图... 近年来,人脸素描-照片合成技术因其在执法、刑事及娱乐等领域的需求,成为研究热点。CycleGAN作为一种无需配对图像监督的深度学习模型,擅长图像跨域转换,为素描与照片间的高效转换提供了有力工具。鉴于收集大量成对的人脸图像和素描图像存在较大难度,同时人脸素描图像生成任务中存在图像细节模糊和低清晰度的问题,提出一种改进的CycleGAN模型。本文在CycleGAN模型中ResNet架构的生成器的残差块中引入自注意力机制,使得CycleGAN的生成器模型能够更有效地学习不同通道特征以及人脸图像中不同区域的重要程度,在处理图像时自动聚焦于面部特征的重要区域,如眼睛、鼻子、嘴巴等,同时增加素描的边缘清晰度与完整度,从而提升生成的人脸素描图像质量。在数据集CUHK和FS2K上进行实验,本文模型的图像质量评估指标结构相似性、峰值信噪比、多尺度结构相似度在数据集CUHK上分别为0.7741、11.7451、0.8504,在数据集FS2K上分别为0.7049、13.2745、0.7970,优于对比的CycleGAN、Pix2Pix、MUNIT、DCLGAN模型。对比实验以及主观视觉结果表明,本文模型能够有效地完成人脸素描化的过程,并生成较高质量的人脸素描图像。 展开更多
关键词 cyclegan 生成对抗网络 注意力机制 残差网络
在线阅读 下载PDF
基于改进CycleGAN的水下图像颜色校正与增强 被引量:15
9
作者 李庆忠 白文秀 牛炯 《自动化学报》 EI CAS CSCD 北大核心 2023年第4期820-829,共10页
针对水下观测图像的颜色失真和散射模糊问题,提出一种基于改进循环一致性生成对抗网络(Cycle-consistent generative adversarial networks,CycleGAN)的水下图像颜色校正与增强算法.为了利用CycleGAN学习水下降质图像到空气中图像的映... 针对水下观测图像的颜色失真和散射模糊问题,提出一种基于改进循环一致性生成对抗网络(Cycle-consistent generative adversarial networks,CycleGAN)的水下图像颜色校正与增强算法.为了利用CycleGAN学习水下降质图像到空气中图像的映射关系,对传统CycleGAN的损失函数进行了改进,提出了基于图像强边缘结构相似度(Strong edge and structure similarity,SESS)损失函数的SESS-CycleGAN,SESS-CycleGAN可以在保留原水下图像的边缘结构信息的前提下实现水下降质图像的颜色校正和对比度增强.为了确保增强后图像和真实脱水图像颜色的一致性,建立了SESSCycleGAN和正向生成网络G相结合的网络结构;并提出了两阶段学习策略,即先利用非成对训练集以弱监督方式进行SESS-CycleGAN学习,然后再利用少量成对训练集以强监督方式进行正向生成网络G的监督式学习.实验结果表明:本文算法在校正水下图像颜色失真的同时还增强了图像对比度,且较好地实现了增强后图像和真实脱水图像视觉颜色的一致性. 展开更多
关键词 水下图像 深度学习 循环一致性生成对抗网络 颜色校正 图像增强
在线阅读 下载PDF
基于CSLS-CycleGAN的侧扫声纳水下目标图像样本扩增法 被引量:2
10
作者 汤寓麟 王黎明 +3 位作者 余德荧 李厚朴 刘敏 张卫东 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1514-1524,共11页
针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络... 针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络(least squares generative adversarial networks,LSGAN)及循环对抗生成网络(cycle generative adversarial networks,CycleGAN)的侧扫声纳水下目标图像样本扩增方法。首先,受CycleGAN的启发,设计基于循环一致性的单循环网络结构,保证模型的训练效率。然后,在生成器中融合CSA模块,减少信息弥散的同时增强跨纬度交互。最后,设计了基于LSGAN的损失函数,提高生成图像质量的同时提高训练稳定性。在船舶光学域数据集与侧扫声纳沉船数据集上进行实验,所提方法实现了光学-侧扫声纳样本间信息的高效、稳健转换以及大量侧扫声纳目标样本的扩增。同时,基于本文生成样本训练后的检测模型进行了水下目标检测,结果表明,使用本文样本扩增数据训练后的模型在少样本沉船目标检测的平均准确率达到了84.71%,证明了所提方法实现了零样本和小样本水下强代表性目标样本的高质量扩增,并为高性能水下目标检测模型构建提供了一种新的途径。 展开更多
关键词 样本扩增 侧扫声纳 循环生成对抗网络 通道和空间注意力模块 最小二乘生成对抗网络
在线阅读 下载PDF
基于CycleGAN的图像隐私保护 被引量:5
11
作者 谢艺艺 张玉书 +2 位作者 赵若宇 温文媖 周玉倩 《应用科学学报》 CAS CSCD 北大核心 2023年第2期228-239,共12页
社交媒体和云平台为图像的传播和存储带来了便利,但同时也引起了人们对于图像隐私的担忧。因此,需要采取一定的措施去保护图像的隐私,以防止隐私被窃取和非法使用。基于上述目标,本文提出了基于循环对抗网络(cycle-consistent generativ... 社交媒体和云平台为图像的传播和存储带来了便利,但同时也引起了人们对于图像隐私的担忧。因此,需要采取一定的措施去保护图像的隐私,以防止隐私被窃取和非法使用。基于上述目标,本文提出了基于循环对抗网络(cycle-consistent generative adversarial networks,CycleGAN)的图像隐私保护。为了在图像隐私保护中兼顾可用性,该方法先用图像分割和CycleGAN组合,选择出不同的分割系数来辅助生成不同程度的隐私保护图像。然后利用可逆信息隐藏对生成的隐私保护图像进行信息的嵌入,从而阻止非法使用者在图像重构中提取隐私信息,进而保证了整个过程图像隐私保护和可用性的平衡。本文用PIPA数据集对该方法进行训练和测试,采用峰值信噪比和结构相似性指数作为客观指标对隐私保护的图像进行评估。实验结果表明,本方案在图像隐私保护和可用性两方面都优于其他对比方案。 展开更多
关键词 图像隐私保护 图像分割 cyclegan模型 可逆信息隐藏 图像重构
在线阅读 下载PDF
基于Style-CycleGAN-VC的非平行语料下的语音转换 被引量:3
12
作者 高俊峰 陈俊国 《计算机应用与软件》 北大核心 2021年第9期133-139,159,共8页
非平行语料下的语音转换(Voice Conversion,VC)是指在非平行语音数据集的情况下改变源语音特征到目标语音特征的映射技术。由于非平行数据的缺陷,所以当前研究多集中于平行语料下的语音转换,而有关非平行语料的研究提出的模型架构存在... 非平行语料下的语音转换(Voice Conversion,VC)是指在非平行语音数据集的情况下改变源语音特征到目标语音特征的映射技术。由于非平行数据的缺陷,所以当前研究多集中于平行语料下的语音转换,而有关非平行语料的研究提出的模型架构存在局限性,在特定说话人下进行训练得到的模型无法适用于任意说话人下的语音转换,且转化效果有待提高。对此,借鉴两种生成式对抗网络(Generative Adversarial Network,GAN)的变体StyleGAN和CycleGAN的结构特点,对生成器网络的层重新设计,添加辅助特征提取神经网络,提出一种称为Style-CycleGAN-VC的新模型,实现了非平行语料下任意说话人之间的任意语音转换。实验表明,与CycleGAN-VC模型相比,该模型对训练的特定说话人的语音转换效果有所提高,对任意说话人的语音转换效果与其相近。 展开更多
关键词 语音转换 非平行语料 生成式对抗网络 Style-cyclegan-VC 语音合成
在线阅读 下载PDF
基于DD-CycleGAN的道路检测模型研究 被引量:4
13
作者 王怀章 蔡立志 张娟 《传感器与微系统》 CSCD 北大核心 2022年第10期47-50,54,共5页
道路检测对于辅助驾驶而言仍具有挑战性。为了获得更准确的道路检测结果,提出一种结合深度学习与自适应检测的道路检测模型,该模型可以有效地提取道路特征并完成道路检测任务。首先,采用双判别器周期一致的生成对抗网络(DD-CycleGAN)作... 道路检测对于辅助驾驶而言仍具有挑战性。为了获得更准确的道路检测结果,提出一种结合深度学习与自适应检测的道路检测模型,该模型可以有效地提取道路特征并完成道路检测任务。首先,采用双判别器周期一致的生成对抗网络(DD-CycleGAN)作为全文的基础框架网络。其次,在生成器中添加空间卷积神经网络(CNN)以及残差密集块,进一步提升生成器的性能。最后,提出一种自适应的优化模型来提高道路检测的准确度。实验结果表明:提出的模型在KITTI道路基准数据集上精度达到了92.15%,明显优于传统的道路检测算法。 展开更多
关键词 道路检测 双判别器周期一致的生成对抗网络 残差密集块 空间卷积神经网络
在线阅读 下载PDF
基于CycleGAN的人脸素描图像生成 被引量:1
14
作者 徐志鹏 卢官明 罗燕晴 《计算机技术与发展》 2021年第8期63-68,共6页
CycleGAN是一种基于生成对抗网络的衍生模型,可以在缺少成对训练图像的条件下实现两个具有不同风格的图像域之间的相互转换。由于收集大量成对的人脸图像和素描图像存在较大的难度,并且针对人脸素描图像生成任务中存在的图像细节模糊和... CycleGAN是一种基于生成对抗网络的衍生模型,可以在缺少成对训练图像的条件下实现两个具有不同风格的图像域之间的相互转换。由于收集大量成对的人脸图像和素描图像存在较大的难度,并且针对人脸素描图像生成任务中存在的图像细节模糊和低清晰度的问题,提出一种改进的CycleGAN模型。通过引入基于注意力机制的残差模块,让CycleGAN的生成器模型可以更加有效地学习不同通道特征和人脸图像中不同区域的重要程度,降低人脸图像中无用信息对生成模型的影响,从而提升生成的人脸素描图像的质量。通过对比实验发现,使用基于注意力机制的CycleGAN模型生成的素描人脸图像质量较好,且更完整清晰地保留了较丰富的面部特征信息,优于CycleGAN和DualGAN模型,充分证明了基于注意力机制的改进CycleGAN模型的有效性。 展开更多
关键词 cyclegan 生成对抗网络 风格转换 人脸素描 注意力机制 残差模块
在线阅读 下载PDF
基于改进CycleGAN的林火图像烟雾滤除算法研究 被引量:4
15
作者 李海顺 李兴东 《消防科学与技术》 CAS 北大核心 2024年第11期1596-1602,共7页
森林火灾现场的烟雾易遮挡火场要素信息,从而严重干扰火点定位等遥感技术手段的实施。本文提出了一种用于火场非均匀烟雾滤除的改进CycleGAN网络算法。该算法组合小波变换分支与包含Res2Net模块、注意力模块的知识蒸馏分支形成生成器,引... 森林火灾现场的烟雾易遮挡火场要素信息,从而严重干扰火点定位等遥感技术手段的实施。本文提出了一种用于火场非均匀烟雾滤除的改进CycleGAN网络算法。该算法组合小波变换分支与包含Res2Net模块、注意力模块的知识蒸馏分支形成生成器,引入PatchGAN网络作为判别器,同时在CycleGAN基础上增加了感知损失和映射损失函数。该算法实现了火场细节的恢复,可有效去除林火图像伪影。为了验证模型有效性,基于国际典型数据集NH-HAZE及中尺度点烧试验数据集,对比了该算法与现有去雾算法的效果。结果表明:该算法去雾效果对比现有模型有了显著改进(与第二名相比,PSNR、SSIM值分别至少提高了2.40 dB和2.07 dB,0.02和0.15),能够提升森林火灾遥感监测质量,可以为森林火灾消防决策提供更丰富、有价值的火场关键信息。 展开更多
关键词 森林火灾 非均匀烟雾 烟雾滤除 改进cyclegan网络 小波变换 知识蒸馏
在线阅读 下载PDF
基于多视角序列图像的高光去除CycleGAN网络
16
作者 郭圣逸 李丽 +2 位作者 沈彬 陈常念 胡新荣 《郑州大学学报(理学版)》 CAS 北大核心 2023年第5期11-16,共6页
光线照射镜面物体产生的镜面反射使得采集的图像产生高光现象,高光会影响很多视觉任务的精度。针对图片的去高光问题,在经典无监督学习CycleGAN的框架下提出了一种端到端的分层网络,该模型的输入为已标定的序列高光图像,输出为去除高光... 光线照射镜面物体产生的镜面反射使得采集的图像产生高光现象,高光会影响很多视觉任务的精度。针对图片的去高光问题,在经典无监督学习CycleGAN的框架下提出了一种端到端的分层网络,该模型的输入为已标定的序列高光图像,输出为去除高光的图像。为了获取成对数据集以训练网络,使用可微分渲染器生成视角、光照可控镜面反射-漫反射成对合成数据集。无监督CycleGAN图像风格迁移网络作用于输入图像时,仅使用小批量的背景图片,即可将图像分解为前景与背景,图像风格迁移网络仅作用于前景,进一步提高了图像转换的精度。实验结果表明,该方法可有效去除高光。 展开更多
关键词 高光去除 卷积神经网络 cyclegan 无监督 可微分渲染
在线阅读 下载PDF
图像感知引导CycleGAN网络的背景虚化方法
17
作者 叶武剑 林振溢 +1 位作者 刘怡俊 刘成民 《液晶与显示》 CAS CSCD 北大核心 2023年第9期1248-1261,共14页
现有生成对抗网络在背景虚化处理过程中,往往是无差别地提取整张输入图像的特征,导致网络难以区分图像的前后景,从而容易出现图像失真的现象。本文提出了图像感知引导CycleGAN网络的背景虚化方法,通过引入图像感知信息以提升模型性能。... 现有生成对抗网络在背景虚化处理过程中,往往是无差别地提取整张输入图像的特征,导致网络难以区分图像的前后景,从而容易出现图像失真的现象。本文提出了图像感知引导CycleGAN网络的背景虚化方法,通过引入图像感知信息以提升模型性能。图像感知信息包括注意力信息和景深信息,前者用于引导网络关注不同的前后景区域,从而区分前后景;而后者用于增强前景目标的感知信息,能够实现有效的智能定焦并减少图像出现失真的现象,使背景虚化效果更佳。通过最小化生成对抗损失及循环一致性损失,可以避免丢失过多景深信息,提高图片的生成质量。实验结果及数据表明,提出的方法在背景虚化过程中能有效区分前后景并改善图像失真的现象,使生成的效果更加真实。此外,在与现有方法生成的图像效果对比中,通过采用问卷调查的方式进行了评估。本文提出的图像感知引导CycleGAN网络的背景虚化方法与SOTA相比,生成的图像质量更好,模型大小与生成图像的速率也具有明显的优势,分别为56.10 MB及47 ms。 展开更多
关键词 背景虚化 图像感知 cyclegan网络 智能定焦
在线阅读 下载PDF
基于CycleGAN和CNN的GIS振动信号去噪与机械缺陷识别 被引量:13
18
作者 廖景雯 关向雨 +2 位作者 林建港 刘江 赵俊义 《电力工程技术》 北大核心 2023年第5期37-45,共9页
针对现场气体绝缘开关设备(gas insulated switchgear,GIS)振动检测结果易受外界背景噪声干扰的不足,文中提出基于生成对抗网络和卷积神经网络的现场GIS接触缺陷抗干扰检测框架。首先,开展GIS通流试验,获取在触指缺失、螺栓松动、存在... 针对现场气体绝缘开关设备(gas insulated switchgear,GIS)振动检测结果易受外界背景噪声干扰的不足,文中提出基于生成对抗网络和卷积神经网络的现场GIS接触缺陷抗干扰检测框架。首先,开展GIS通流试验,获取在触指缺失、螺栓松动、存在分解物和导体对接深度不足4种典型缺陷下的振动波形,并收集包含背景噪声干扰的现场GIS振动波形作为参考,通过对振动数据进行图谱转化,构建用于背景噪声干扰去除和缺陷分类的数据集;其次,将现场振动图谱作为输入,采用周期一致生成对抗网络(cycle-consistent generative adversarial network,CycleGAN)对GIS进行现场背景噪声干扰去除;然后,采用AlexNet和ResNet18卷积网络结构对振动图谱特征进行提取;最后,采用全连接层对图谱特征进行分类,并对比不同振动信号图谱算法对分类结果的影响。结果表明,对于现场数据,所提模型的最大均值差异(maximum mean discrepancy,MMD)可达0.9560,弗雷谢特起始距离(Fréchet inception distance,FID)可达62.09;Mel-ResNet18模型对GIS接触缺陷分类的准确率达99.43%。文中所提方法对于提高现场GIS振动检测和接触缺陷诊断结果的有效性具有重要应用价值。 展开更多
关键词 气体绝缘开关设备(GIS) 接触缺陷 机械振动 周期一致生成对抗网络(cyclegan) AlexNet ResNet18
在线阅读 下载PDF
基于注意力机制的CycleGAN服装局部风格迁移研究 被引量:8
19
作者 陈佳 董学良 +1 位作者 梁金星 何儒汉 《计算机工程》 CAS CSCD 北大核心 2021年第11期305-312,共8页
针对复杂背景下服装图像局部区域风格迁移难以控制及迁移后容易产生边界伪影的问题,提出一种基于注意力机制的CycleGAN服装局部风格迁移方法。通过VGG16网络分别提取服装图像的内容特征与风格特征,将其输入基于注意力机制的CycleGAN生... 针对复杂背景下服装图像局部区域风格迁移难以控制及迁移后容易产生边界伪影的问题,提出一种基于注意力机制的CycleGAN服装局部风格迁移方法。通过VGG16网络分别提取服装图像的内容特征与风格特征,将其输入基于注意力机制的CycleGAN生成器中,应用注意力机制在复杂背景下的各个服装区域分配概率分布信息,获得注意力分布更多的区域及相关度更高的区域,并采用改进的损失函数校正边界伪影,对该区域进行风格迁移得到所需的风格迁移服装图像。实验结果表明,与CNN、FCN、BeautyGAN图像局部风格迁移方法相比,该方法不仅可以突出服装图像局部风格迁移效果,而且增强了图像细节,有利于提高输出图像的真实性和艺术性。 展开更多
关键词 图像风格迁移 边界伪影 注意力机制 循环生成对抗网络 损失函数
在线阅读 下载PDF
基于CycleGAN的灰度图像彩色化方法 被引量:3
20
作者 陈宗楠 叶耀光 潘家辉 《计算机系统应用》 2023年第8期126-132,共7页
当前主流的图片彩色化方法包括传统算法和深度学习方法.随着深度学习模型的发展,基于深度学习的灰度图像彩色化方法能带来更好的着色效果,但仍然存在细节损失和着色枯燥问题.针对上述问题,本文将CycleGAN模型应用在非单一类别的灰度图... 当前主流的图片彩色化方法包括传统算法和深度学习方法.随着深度学习模型的发展,基于深度学习的灰度图像彩色化方法能带来更好的着色效果,但仍然存在细节损失和着色枯燥问题.针对上述问题,本文将CycleGAN模型应用在非单一类别的灰度图像彩色化上,使其在动物、植物、风景等图片上有逼真的着色效果.模型结构上对CycleGAN模型的激活函数加以改进,在生成器使用PReLU激活函数,使模型更易于训练.在判别器使用PatchGAN提高图片高分辨率上的颜色细节.通过ImageNet数据集5个热门类别图像的训练后,模型对动植物与风景图彩色化的效果十分逼真.在图像评估指标中,该模型在PSNR中比GAN高了0.603 dB约有2.1%的提升,在SSIM中明显高于其他模型,在效果上有5.1%的提升.从视觉感受来看,通过CycleGAN彩色化的图片饱和度更高,在视觉真实性上高于VGG和GAN等模型,解决了着色枯燥问题,而且更容易还原图片中的颜色细节,避免细节损失. 展开更多
关键词 深度学习 图像处理 灰度图像彩色化 循环生成对抗网络 马尔可夫判别器 残差神经网络
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部